python行转列 pandas_pandas.DataFrame的pivot()和unstack()实现行转列

df=pd.DataFrame(np.random.randn(20).reshape(4,5),index=[['a','a','b','b'],[1,2,3,4]],columns=[10,20,30,40,50])

In [96]: df

Out[96]:

10 20 30 40 50

a 1 0.945775 0.768337 0.851630 -1.050475 -1.102554

2 -0.366129 0.353388 -0.722637 -0.056877 1.178270

b 3 0.885536 0.210911 2.067309 1.283721 -0.432906

4 0.173504 1.263630 1.264698 0.913879 1.156815

In [98]: df.stack()

Out[98]:

a 1 10 0.945775

20 0.768337

30 0.851630

40 -1.050475

50 -1.102554

2 10 -0.366129

20 0.353388

30 -0.722637

40 -0.056877

50 1.178270

b 3 10 0.885536

20 0.210911

30 2.067309

40 1.283721

50 -0.432906

4 10 0.173504

20 1.263630

30 1.264698

40 0.913879

50 1.156815

In [99]: df.stack().unstack()

Out[99]:

10 20 30 40 50

a 1 0.945775 0.768337 0.851630 -1.050475 -1.102554

2 -0.366129 0.353388 -0.722637 -0.056877 1.178270

b 3 0.885536 0.210911 2.067309 1.283721 -0.432906

4 0.173504 1.263630 1.264698 0.913879 1.156815

以上利用了Pandas的层次化索引,实际上这也是层次化索引一个主要的用途,结合本例我们可以把代码改成如下:

result_df=pd.read_sql('select UserName,Subject,Score from TEST',conn)

# 在从数据库中获取的数据格式是这样的:

UserName Subject Score

0 张三 语文 80.0

1 张三 数学 90.0

2 张三 英语 70.0

3 张三 生物 85.0

4 李四 语文 80.0

5 李四 数学 92.0

6 李四 英语 76.0

7 王五 语文 60.0

8 王五 数学 82.0

9 王五 英语 96.0

10 王五 生物 78.0

# 如果要使用层次化索引,那么我们只需要把UserName和Subject列设置为层次化索引,Score为其对应的值即可,我们借用set_index()函数:

df=result_df.set_index(['UserName','Subject'])

In [112]: df.unstack()

Out[112]:

Score

Subject 数学 生物 英语 语文

UserName

张三 90.0 85.0 70.0 80.0

李四 92.0 NaN 76.0 80.0

王五 82.0 78.0 96.0 60.0

# 使用stack可以将unstack的结果转回来,这样就也在形式上实现了行列互转,之后的操作基本一致了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值