算法初步-程序框图
(10页)
本资源提供全文预览,点击全文预览即可全文预览,如果喜欢文档就下载吧,查找使用更方便哦!
9.9 积分
1. 1. 2程序槌0B簿二、三课町一、 教学目标:1、 知识与技能:掌握程序框图的概念;会川通川的图形符号表示算法,掌握算法的三个基 本逻辑结构;掌握画程序框图的基本规则,能止确画出程序框图。2、 过程与方法:通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学 会灵活、正确地画程序框图。3、 情感态度与价值观:通过木节的学习,使我们对程序框图有一个基本的了解;掌握算法 语言的三种基本逻辑结构,明确程序框图的基本要求;认识到学习程序框图是我们学习计算 机的一个基本步骤,也是我们学习计算机语言的必经Z路。二、 重点与难点:重点是程序框图的基木概念、基木图形符号和3种基木逻辑结构,难点是 能综合运川这些知识正确地画出程序框图。三、 学法与教学用具:1、 通过上节学习我们知道,算法就是解决问题的步骤,在我们利川计算机解决问题的 时候,首先我们要设计计算机程序,在设计计算机程序时我们首先耍画出程序运行的流程图, 使整个程序的执行过程直观化,使抽象的问题就得丁分清晰和具体。有了这个流程图,再去 设计程序就冇了依据,从而就可以把整个程序川机器语言表述出來,因此程序框图是我们设 让程序的基本和开端。2、 我们在学习这部分内容时,首先要弄清各种图形符号的意义,明确每个图形符号的 使用环境,图形符号间的联结方式。例如“起止框”只能出现在整个流程图的首尾,它表示 程序的开始或结束,其他图形符号也是如此,它们都有各自的使用环境和作用,这是我们在 学习这部分知识时必须耍注意的一个方血。另外,在我们描述算法或画程序框图时,必须遵 循一定的逻辑结构,事实证明,无论如何复杂的问题,我们在设计它们的算法时,只需用顺 序结构、条件结构和循坏结构这三种基本逻辑就对以了,因此我们必须掌握并止确地运用这 三种某本逻辑结构。3、 教学用具:电脑,计算器,图形计算器四、 教学设想:1、创设情境:算法可以用口然语言來描述,但为了使算法的程序或步骤表达得更为直观,我们更经常 地用图形方式來表示它。基本概念:(1) 起止框图:[ ]起止框是任何流程图都不可缺少的,它表明程序的开始和结朿,所以一个完整的流程鹵的討末两端必须是起止框。(2) 输入、输出框:二7表示数据的输入或结果的输出,它可用在算法中的任何需 要输入、输出的位置。图1-1中有三个输入、输出框。第一个出现在开始后的第一步,它的 作用是输入未知数的系数all,al2,a21,a22和常数项bl,b2,通过这一步,就可以把给定的 数值写在输入框内,它实际上是把未知数的系数和常数项的值通知给了计算机,另外两个是 输出框,它们分别位于由判断分出的两个分支中,它们表示最后给出的运算结果,左边分支 中的输出分框负责输出DHO时未知数xl, x2的值,右边分支中的输出框负责输出0=0时的 结果,即输出无法平解信:恳。(3) 处理框:| |它是采用来赋值、执行计算语句、传送运算结果的图形符号。图1T中出现了两个处理框。第一个处理框的作用是计算D=alla22-a21al2的值,第二个处理 框的作用是计算 xl=(bla22-b2al2)/D, x2=(b2all-bla21)/D 的值。(4) 判断框:<3> 判断框一般有一个入口和两个出口,有时也有多个出口,它是惟 一的具有两个或两个以上出口的符号,在只有两个出口的情形中,通常都分成“是”与"否”(也可用“Y”与“N”)两个分支,在图1-1中,通过判断框对I)的值进行判断,若判断框 屮的式子是D=0,则说明D=0时由标有“是”的分支处理数据;若DH0,则由标有“否”的 分支处理数据。例如,我们要打印x的绝对值,可以设计如下框图。从图中可以看到市判断框分出两个分支,构成一个选择性结构,其中选择的标准是“x 20”,若符合这个条件,则按照“是”分支继续往下执行;若不符合这个条件,则按照“否” 分支继续往下执行,这样的话,打印出的结果总是x的绝对值。在学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规 则如下:(1) 使用标准的图形符号。(2) 框图一-般按从上到下、从左到右的方向画。(3) 除判断框外,人多数流程图符号只有一个进入点和一个退出点。判断框具有超过 一个退出点的惟一符号。(4) 判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个 结果;另一类是多分支判断,有几种不同的结果。(5) 在图形符号内描述的语言要非常简练清楚。2、典例剖析:例1:己知x二4, y二2,画出计算w=3x+1y的值的程序框图。解:程序框如下图所示:4和2分别是x和y的值▼[结束小结:此图的输入框旁边加了一个注释框」^它的作用是对框中的数据或内容进行说 明,它可以出现在任何位置。某础知识应用题1)顺序结构:顺序结构描述的是是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的。例2:已知一个三角形的三边分别为2、3、4,利川海伦公式设计一个算法,求出它的面积, 并画出算法的程序框图。算法分析:这是一个简单的问题,只需先算岀p的值,再将它代入公式,最后输出结果, 只用顺序结构就能够表达出算法。程序框图:开始 7V结束2)条件结构:一些简单的算法可以用顺序结构来表示,但是这种结构无法对描述对象进行 逻辑判断,并根据判断结果进行不同的处理。因此,需要有另一种逻辑结构来处理这类问 题,这种结构叫做条件结构。它是根据指定打件选择执行不同指令的控制结构。例3:任意给定3个正实数,设计一个算法,判断分别以这3个数为三边边长的三角形 是否存在,画出这个算法的程序框图。算法分析:判断分別以这3个数为三边边长的三角形是否存在,只需要验收这3个数当 中任意两个数的和是否人于第3个数,这就需要川到条件结构。程序框图:开始是V "结束3) 循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理 步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包 含条件结构。循环结构又称重复结构,循环结构可细分为两类:(1) 一类是当型循环结构,如图1-5 (1)所示,它的功能是当给定的条件P1成立时, 执行A框,A框执行完毕后,再判断条件R是否成立,如果仍然成立,再执行A框,如此反 复执行A框,直到某一次条件A不成立为止,此吋不再执行A框,从b离开循环结构。(2) 期一类是直到型循环结构,如下图所示,它的功能是先执行,然后判断给定的条件P?是否成立,如果D仍然不成立,则继续执行A框,直到某一次给定的条件P2成立为止,当型循环结构(1)直到型循环结构(2)例4:设计一个计算1+2+…+100的值的算法,并画出程序框图。算法分析:只需要一个累加变量和个计数变量,将累加变量的初始值为0,计数变量 的值可以从1到100。 程序框图:程^框图如卜?图:▼结束 关 键 词: 算法 初步 程序 框图
天天文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。