dataframe数据标准化处理_非靶向代谢组学分析连载(第一篇:缺失数据处理、归一化、标准化)...

本文介绍了非靶向代谢组学数据分析的第一步,包括缺失数据处理和标准化。针对缺失值,文章提出了使用大多数样品的均值填充的方法。此外,讨论了数据标准化的概念,包括减均值除标准差的标准化和数据中心化。最后,提到了对数和指数变换等数据转化方法,为后续的多元统计分析做准备。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击上方「微生信生物」关注我们!专业干货推送!

引子

今天开始我们一起来学习非靶向代谢组学(GC-TOF-MS)的数据处理过程。我是从注释到化学式带有相对丰度的表格开始处理。相信这也是目前大家最为迫切的过程。前面的峰提取,等操作,后面我们会结合MetaboAnalyst给大家补充,但是不会首先做这部分工作。

《非靶向代谢组学》系列推送有事要说

本完整的教程涉及R,MetaboAnalyst(网站工具,也是R包)基本完整的教程也可以仅仅需要R即可;

本推送中所需的代谢组数据、R语言分析等中间流程,均可以在百度网盘下载。链接:https://pan.baidu.com/s/1uwMaOz1vezcpWT8_XSowRg 密码:lh4x

第一篇. 缺失数据处理、归一化、标准化

本节课程,需要完成《非靶向代谢组学》系列之前的阅读

1. 非靶向代谢组学数据分析连载(第零篇引子)

缺失值在我们使用excel打开数据框中的表现就是空的格子,在R语言中缺失值通常以NA表示,判断是否缺失值的函数是is.na;

GC-MS测得数据进过峰对齐,相同峰即为认定相同的物质,但是有时候会有少量样品的峰值对齐的并不好,这个时候我们要注意,如果一个处理的样品大多数的峰都在一个位置

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值