java实现梯度上升算法_第7章 PCA与梯度上升法 学习笔记上

目录

7-1 什么是PCA

e4b264b53a8dc66d30c6f794f69ed2c4.png

84d613ef9854c882234c05ed05676d0f.png

降维后

863ee1d400b2f379a1cdea8774fe4ec0.png

同理去掉特征一,降维则为

772926769e5dafcfe5c197df42e42f86.png

80a8f64a0d2a187d11925bbe766cc977.png

那个方案更好呢,右边的,在x轴上点集间距离大,有更好的区分度

93aa4e6efda40f7b8256ee2aa71e99bc.png

4f3fcd873fcca7b2f4fcc9078d5c4efe.png

将点映射到这条斜线上,数据点变为,其整体与原来变化不大,从二维降到了一维,这时无论是映射到xy上间距大好

34f7cb4c419baa895949c10e267907e0.png

341fa9240b6caeb66e199d975ea95dad.png

方差样本的疏密

78ba0a26be86c4c070f32ee185494eb1.png

dc70feb18c9fb614f2aea1c48b15e280.png

所有的样本减去整体样本的均值

295ee17b095ee8f79d1d03f10e50cc5d.png

441a15b966ed87e103bc44f071c9d298.png

9257cf405d0c9feaaeb276325d8bb00f.png

dmean后式子化简为这样

c093cdf650474dcad433773b36b5c9dc.png

57abcde59ff784de77a3bf2282361e0d.png

X是向量,demean后为零

0f8a2d4d6cb174b832819ac4daec0765.png

5cf03b466394f7f174e4b5ea7596723e.png

w是单位方向向量

b84b4d604bf1eb89cf7a94593d6824c5.png

acbd6c2c21017df9674e2d8ecbd17a69.png

f77135e4c48d578ae83bc3714ddc3740.png

主成分分析法有很强的数学原理

faf1f3ff5ed2e41fd4f779d679fc05d1.png

横纵坐标是两个特征,与线垂直,不同于线性回归,

横特征纵是标记,与坐标垂直

20d759f0404e0cad1cfcdac6b0fb05ba.png

7-2 使用梯度上升法求解PCA问题

X是非监督学习提供的样本,没有标记y

52a491ba18f8f6401863bd38da70d13b.png

822dd12319db8b14860c49ed2d5230b6.png

整理式子,不用for循环,通过向量的运算计算

b35946639d4aafdf3a591a9f40d46a4c.png

3a2a54f2f9b4dfe967b0d486e6ba9f23.png

1Xm, mXn == 1Xn 需要nx1的梯度,将上式转置  相清楚谁是矩阵谁是向量,如果是矩阵是多少乘多少的

9908aabbb6aced20aa4284d44949ff94.png

7-3 求数据的主成分PCA

2e15076e71f5d69d385a8a2d1cfed332.png

demean

87ac43ee88b80388217f1ed0fb5af008.png

梯度上升法

440c5b57467e03a1e1fb201766339643.png

def f(w, X):

return np.sum((X.dot(w)**2)) / len(X)

def df_math(w, X):

return X.T.dot(X.dot(w)) * 2. / len(X)

def df_debug(w, X, epsilon=0.0001):

res = np.empty(len(w))

for i in range(len(w)):

w_1 = w.copy()

w_1[i] += epsilon

w_2 = w.copy()

w_2[i] -= epsilon

res[i] = (f(w_1, X) - f(w_2, X)) / (2 * epsilon)

return res

def direction(w):

return w / np.linalg.norm(w)

def gradient_ascent(df, X, initial_w, eta, n_iters = 1e4, epsilon=1e-8):

w = direction(initial_w)

cur_iter = 0

while cur_iter < n_iters:

gradient = df(w, X)

last_w = w

w = w + eta * gradient

w = direction(w) # 注意1:每次求一个单位方向

if(abs(f(w, X) - f(last_w, X)) < epsilon):

break

cur_iter += 1

return w

w单位化处理,

初始的搜索不能为零

37d3d46bf8214f8beabdd0bea6bb2c46.png

使用极端数据集测试

cf1a4c332d774bfa55d052fdbce136e1.png

b96e5b6e6f38c95c94ae32b870650dff.png

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值