php 教学目标,基于教学目标,共话教学设计

本次集中培训聚焦小学数学教学设计,多位教师分享了基于目标达成的教学案例。陈庆橹老师通过对比研究揭示了20以内数的进位加法教学变化;胡早娣老师探讨了“问题解决”背景下的整数两级运算应用问题教学策略;汪杰老师以分数的初步认识为例,阐述深度思考在教学设计中的应用;季纯纯老师关注几何直观如何促进分数乘法的意义理解;林天才老师则分享了列方程解应用题的教学设计与思考。俞正强老师对各位老师的报告进行了深入点评,并提出了教学关键在于清晰区分数与量的关系,以及如何有效教授问题解决的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于教学目标,共话教学设计

——一课研究团队11月线下集中培训第1天掠影

11月9日,“朱乐平小学数学名师工作站 · 一课研究团队”在杭州胜利实验小学开展集中培训活动,数百名教师齐聚一堂,共同学习、聆听团队成员的主题报告——基于目标达成的教学设计。

第一天活动由温州市鹿城区教师培训和科研中心的周晓林老师主持,上午由团队陈庆橹、胡早娣、汪杰、季纯纯、林天才五位老师作主题报告,著名特级教师俞正强老师点评。下午,团队的忻菁老师作报告综述,俞正强老师做观点报告《数与代数教学设计研究》。

一、《20以内数的进位加法——9加几》教学设计比较研究

采荷一小的陈庆橹老师以“9加几”为例,说明他做20以内数的进位加法教学设计比较研究的研究历程:关键词搜索,收集到184篇相关文章,再寻找相对完整的教学设计或教学实录52篇。

通过对比,陈老师找到教学设计的共性内容与个性内容,并以实验课标颁布为时间节点,发现教学目标、教学过程等方面的变化特点,如教学目标的变化是不断细化、不断丰富;情境导入的变化从复习导入到情境导入再到情境、复习结合导入;探究新知从扶到放,据课改要求又从放到扶等。

对比探究新知过程的前后变化,陈老师认为,我们在9加几的教学中,要注重问题开放,注重方法多样化和优化,并令学生经历“真”优化。

二、“问题解决”背景下“整数两级运算应用问题”的教学

杭州绿城育华亲亲学校的胡早娣老师以两个研究问题“教学目标如何定位?如何达成教学目标?”引领,从课标、教材、学生学情、教材设计四个方面报告第4小组部分研究内容。

从课标维度看,“问题解决”经历从“应用题”到“解决问题”,再到“问题解决”3个阶段,教学目标指向“发现问题、提出问题能力、分析和解决问题的基本方法、方法的多样化、合作交流”等关键词。

从教材例题与习题分析,人教版“问题解决”的编排与波利亚“怎样解题”的步骤一致,需要经历“理解题目(你知道了什么)、拟定方案(怎样解答)、执行方案(解答)、回顾(解答正确吗)”的解题步骤。胡老师认为,解决两级运算应用问题的关键是分析数量关系,找中间问题。

此后,胡老师以学生提出问题、解决问题的水平层次划分为基础,详细报告“整数两级运算应用问题”的前测,并从学习材料设计、学习策略设计、分层练习设计、作业设计四个方面作以问题解决为导向的教学设计分析。

胡早娣老师的报告结构清晰、条理清楚,有详细的数据和实例支撑,是课题研究很好的参照。

三、汪杰 基于深度思考的教学设计研究——以分数的初步认识为例

来自宁波奉化萧王庙中心小学的汪杰老师围绕“怎么教,教什么”这两个问题阐述基于深度思考的教学设计研究。汪杰老师从58篇各版本设计、12篇分数概念定义的讨论文章与21篇教学反思与实录评析中统计得到,93.1%的教学设计是从率的角度教分数。

那么,教量可为吗?通过对80名四年级学生展开学情调查,发现有93.2%的学生无法或错误理解”1/4分米“,学生忽视甚至无视”1“,不承认分数是个值。同时,汪杰老师从自然数的学习序列出发,思考分数学习的序,认为初步认识分数从量教起,符合学生的认知发展规律。

确定”分数教什么“后,汪老师从分数如何引入、分数书写顺序、分数的整体认知序列三个方面阐述”分数怎么教“。通过文化溯源、分析利弊,汪老师认为分数的引入从分数开始,同时在课堂表现中让学生把分的过程和取的结果表达出来,并用式子表示。通过质疑分数书写顺序为什么”中间开花“,发散思维”还可以怎么写“,到思考”书写顺序该怎么教“,汪杰老师借助分数的整体认知序列,认为三年级初步认识分数可由自下而上书写,表示等份中的几份,五年级分数再认识时可教习自上而下书写,与后续学习除法与比的定义建立联系。

汪杰老师的深度思考经历知识繁殖、多维思辨、整序建联、实践反思4个步骤,顺应这样的思维方式,可以帮助我们想得更深,想得更广,得到创新的可能。

四、季纯纯:几何直观促进意义理解的《分数乘法》序列课设计

来自温州大学的研究生季纯纯老师以几何直观为切入点,通过教材比较、前测分析、教学设计这三个方面着重展开研究。以”一个数的几分之几“为例,人教版教材与北师版教材的共性之处是重视对意义的理解,异性之处是用了不同的表达原型。

人教版是以份数×每份数=总数为前提条件,由3桶、1/2桶、1/4桶作类比推理,12的3倍用乘法解决,从而推理求12的1/2和求12的1/4也用乘法解决。而北师版则将6平均分2份转换为6的1/2的是多少,转换成6个1/2相加是多少来引入的。了解教材对分数乘法意义不同的表达后,季老师用一组算题对学生进行前测分析,得到的数据显示学生善于利用几何直观进行理解分数乘法的意义。

那么几何直观如何在教学中呈现呢?季老师从以形释理、以形促思、以形究理、以形激联4个方面阐述分数乘法序列课几何直观化的教学设计。借用同一个生活情境,比较分数乘法的两种意义,并依靠FLASH动态拓展巩固。学生充分经历几何直观表征和半直观表征分数乘整数和分数乘分数意义理解的过程,利用不完全归纳法推理出“分数乘整数”的计算法则。最后打通整数乘法、小数乘法、分数乘法的内在联系,提升知识整体上的脉络。

五、林天才  等量+关系>等量关系——列方程解应用题系列课的教学设计与思考

上午的最后一场报告由江南实验学校的林天才为我们带来。一开场,林老师就用幽默的语言牢牢抓住听众的注意力。他从教材文本研究、、学生后测研究及设计研究与思考三个方面来阐述。从教学列方程解应用题时的常见困惑入手,学生受算数思维的影响,不愿意用方程解应用题,列方程解应用题的能力很弱。通过对比三种教材,发现教材的共性之处为采用建模方法,用等量关系建模。

林老师在教师用书中找到他实验的支撑:找等量关系有两个基本方法,一是关系句的转换化。二是用两个不同的代数式表示同一个数量,然后用等号连接。得到理论支持后,林老师即在学校3个班级中开展实验对比研究,2个对照班,1个实验班,实验班在第2课时采用等量+关系的教学方法,随后在后测中发现,实验班的学生解方程正确率高出对照班很多。

这样对比显著的后测结果,其教学是如何进行的呢?林天才老师从引入部分和新知探究2个片段为我们阐述了用“等量+关系”来建模的具体过程:分析数据和关系,用不同的代数式表示相同的量,建立关系,用等号连成方程。林老师认为,代数思维和算术思维,由“等量+关系”达到互相转换的联系和沟通,用“等量+关系”教学>等量关系。

精彩的报告过后,由著名特级教师俞正强老师点评开讲。

俞老师先对汪杰老师报告中关于分数的由来提出了自己的观点:“汪杰说分数的由来是分物、度量和计算。度量这件事情没有分数能解决吗?用什么解决呀?用小单位解决,把大单位划为小单位,解决度量的问题,当一米无法度量的时候,可以用分米来度量,所以度量这件事情一定不是分数的源头。” 俞老师指出,小学数学有两条线,一条线是数不变,量在变(单位不断变大变小);另一条线是单位不变,变数。一会是单位变来变去,一会是数变来变去,然后就是两个混合起来变,小朋友就变晕了。为什么变晕了呢?因为两个事情不清楚,如果小朋友们两个事情搞清楚了,就不会晕了。因此,俞老师认为,教学1/2还是1/2个,即先教量还是先教率并不是分数教学的关键,关键是两者要分开教,一定要有适度的时间间隔。

上午讲完分数,下午俞正强老师和大家说的是问题解决。俞老师先邀请现场老师说一说在平常问题解决教学中遇到的问题:学生字不认识、找不到关键词、不理解就下笔、解决问题模式化、列分步算式多列综合算式少、无法借助图形表达关系式、做完题目不反思不检验、六年级的孩子还不理解情景模型……对于部分问题,俞老师幽默地用自己话语解释:”你是想让不理解的人去编一道,然后让他们理解,结果只有理解的人才能编出来,不理解的人依然编不出来。所以你想不理解的人怎么办?找不到好方法噢。“为更生动地还原课堂现场,俞老师还请现场老师当场授课”你平时是怎么教解决问题的“,并当场生动地演绎分析法和综合法的解决问题教学模式。

通过与老师们的互动,俞特犀利地指出现在有许多老师不会教问题解决了。那么学生是如何学习解决问题的呢?学生对于数量判断基于理解,在判断数量之前的理解学生不理解,才是他们解题的困难所在。俞老师说,这个世界上的事情到源头去,就只有两件事,一件是分,一件是合,两件事情其实又是同一件事情。在运算中,加用来表示合的事情,减用来表示减的事情。而世界的运行是有规律的,因此有很多相等的事情发生,那么相等的合(等合)就用乘法表示,等分就用除法表示。

乘法不应定义为加法的简便运算,这给问题解决带来很大困难,而应当做等合。学生解决问题的前提是对问题的判断,这是什么事情,就用什么运算。一步的问题解决,不需要分析数量关系,它是什么情境(合境、分境、等合境、等分境),就是什么运算,所以审题首先审情境(两种大情境、四种小情境),先让学生体会是什么情境。情境跟着情境,形成情节,两步问题两个节,三步问题三个节,依次类推,根据事情是如何发展的,再审情节,数学是用运算顺序来描述情节发展的。

以两步运算问题”一共烤96个面包,已烤60个,剩下的每次烤9个,还要烤几次“为例:”一共烤96个面包,已烤60个“是一个分境,”每次烤9个,还要烤几次“是等分(除)境。两个情境有两个情节,哪个情节为先呢?按时间顺序排列,先算减,再算除,解决了。因此,上解决问题要上好两节课,第一节课是加减乘除的意义(对应情境),第二节课是稍复杂应用题(理解情节)。

谈完对解决问题的看法后,俞特和老师们分享了他对教师专业发展四个阶段的理解:第一阶段,教“我”的数学知识;第二阶段,教教材知识;第三阶段,教知识的知识;第四阶段,教学生的知识。不同的专业发展阶段老师应当采用不同的更适合自己本阶段的教学方法,第一阶段用灌输法,第二、第三阶段用讲解法,只有第四阶段才是真正的启发式教学。“在历尽沧桑洗尽铅华之后,学生的知识又变成了我的知识,这个时候我们要用什么教学方法?灌输法!”俞特在讲座的最后强调,“灌输法是所有方法中最好的方法,方法本身没有好坏,只看你怎么用!”在老师们或震撼或惊叹的反应中,俞特微微一笑,翩然离去。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值