题目链接
难度:简单 类型: 堆
设计一个找到数据流中第K大元素的类(class)。注意是排序后的第K大元素,不是第K个不同的元素。
你的 KthLargest 类需要一个同时接收整数 k 和整数数组nums 的构造器,它包含数据流中的初始元素。每次调用 KthLargest.add,返回当前数据流中第K大的元素。
示例
int k = 3;
int[] arr = [4,5,8,2];
KthLargest kthLargest = new KthLargest(3, arr);
kthLargest.add(3); // returns 4
kthLargest.add(5); // returns 5
kthLargest.add(10); // returns 5
kthLargest.add(9); // returns 8
kthLargest.add(4); // returns 8
解题思路
维持一个k个元素的最小堆
当新元素小于堆顶元素时,不入堆
当新元素大于堆顶元素时,替换堆顶元素,再变换成最小堆
代码实现
import heapq
class KthLargest:
def __init__(self, k, nums):
"""
:type k: int
:type nums: List[int]
"""
self.heap = nums
self.k = k
heapq.heapify(self.heap)
while len(self.heap) > k:
heapq.heappop(self.heap)
def add(self, val):
"""
:type val: int
:rtype: int
"""
if len(self.heap) < self.k:
heapq.heappush(self.heap, val)
elif val > self.heap[0]:
heapq.heapreplace(self.heap, val)
return self.heap[0]