java 如何用二分法求和_java 二分法算法的实例

java 二分法算法的实例

发布于 2020-3-7|

复制链接

摘记: java 二分法算法的实例1、前提:二分查找的前提是需要查找的数组必须是已排序的,我们这里的实现默认为升序2、原理:将数组分为三部分,依次是中值(所谓的中值就是数组中间位置的那个值)前,中值,中值后;将要查找的值和数组的中值 ..

java 二分法算法的实例1、前提:二分查找的前提是需要查找的数组必须是已排序的,我们这里的实现默认为升序2、原理:将数组分为三部分,依次是中值(所谓的中值就是数组中间位置的那个值)前,中值,中值后;将要查找的值和数组的中值进行比较,若小于中值则在中值前面找,若大于中值则在中值后面找,等于中值时直接返回。然后依次是一个递归过程,将前半部分或者后半部分继续分解为三部分。可能描述得不是很清楚,若是不理解可以去网上找。从描述上就可以看出这个算法适合用递归来实现,可以用递归的都可以用循环来实现。所以我们的实现分为递归和循环两种,可以根据代码来理解算法3、实现:代码如下

```java

package org.cyxl.algorithm.search;

/**

* 二分查找

* @author cyxl

*

*/

public class BinarySearch {

private int rCount=0;

private int lCount=0;

/**

* 获取递归的次数

* @return

*/

public int getrCount() {

return rCount;

}

/**

* 获取循环的次数

* @return

*/

public int getlCount() {

return lCount;

}

/**

* 执行递归二分查找,返回第一次出现该值的位置

* @param sortedData 已排序的数组

* @param start 开始位置

* @param end 结束位置

* @param findValue 需要找的值

* @return 值在数组中的位置,从0开始。找不到返回-1

*/

public int searchRecursive(int[] sortedData,int start,int end,int findValue)

{

rCount++;

if(start>1; //相当于(start+end)/2

//中值

int middleValue=sortedData[middle];

if(findValue==middleValue)

{

//等于中值直接返回

return middle;

}

else if(findValue>1; //相当于(start+end)/2

//中值

int middleValue=sortedData[middle];

if(findValue==middleValue)

{

//等于中值直接返回

return middle;

}

else if(findValue4、测试代码

```java

package org.cyxl.algorithm.search.test;

import org.cyxl.algorithm.search.BinarySearch;

import org.junit.Test;

public class BinarySearchTest {

@Test

public void testSearch()

{

BinarySearch bs=new BinarySearch();

int[] sortedData={1,2,3,4,5,6,6,7,8,8,9,10};

int findValue=9;

int length=sortedData.length;

int pos=bs.searchRecursive(sortedData, 0, length-1, findValue);

System.out.println("Recursice:"+findValue+" found in pos "+pos+";count:"+bs.getrCount());

int pos2=bs.searchLoop(sortedData, findValue);

System.out.println("Loop:"+findValue+" found in pos "+pos+";count:"+bs.getlCount());

}

}

```

二分法(二分查找)是一种在有序数组中查找某一特定元素的搜索算法。实现的基本思路是将数组从中间开始分成两部分,判断要查找的元素在哪一部分中,然后继续在该部分中进行查找,直到找到目标元素或者确定目标元素不存在为止。 下面是用 Java 实现二分法算法的示例代码: ```java public class BinarySearch { // 二分法查找指定元素在数组中的位置 public static int binarySearch(int[] arr, int target) { int left = 0; int right = arr.length - 1; while (left <= right) { int mid = (left + right) / 2; if (arr[mid] == target) { return mid; } else if (arr[mid] < target) { left = mid + 1; } else { right = mid - 1; } } return -1; } // 测试二分法算法 public static void main(String[] args) { int[] arr = {1, 2, 3, 4, 5, 6, 7, 8, 9}; int target = 5; int result = binarySearch(arr, target); if (result == -1) { System.out.println("元素不在数组中"); } else { System.out.println("元素在数组中的位置为:" + result); } } } ``` 在这个示例代码中,我们定义了一个 `binarySearch` 方法来实现二分法算法。该方法接收两个参数:一个有序数组和一个目标元素。在方法中,我们定义了两个变量 `left` 和 `right` 分别表示数组的左右边界。然后使用一个 while 循环来不断缩小查找范围,直到找到目标元素或者确定目标元素不存在为止。 在循环中,我们首先计算出数组的中间位置 `mid`,然后判断目标元素是在中间位置的左边还是右边。如果目标元素比中间位置的值要大,则说明目标元素在中间位置的右边,需要将左边界向右移动;反之,如果目标元素比中间位置的值要小,则说明目标元素在中间位置的左边,需要将右边界向左移动。当左边界大于右边界时,表示目标元素不存在于数组中,此时返回 -1。 最后,我们在 `main` 方法中调用 `binarySearch` 方法来测试二分法算法。在测试中,我们定义了一个有序数组和一个目标元素,并将它们作为参数传递给 `binarySearch` 方法。如果方法返回的结果为 -1,则表示目标元素不在数组中;否则,方法返回的结果就是目标元素在数组中的位置。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值