“学”以致用
-----
简单数学建模应用问题
100
例
数学教学过程中学习了一个数学公式后,
需要做大量的应用题,
通过训练来加深理解所
学公式。
但是在生活中又有多少实际问题是可以直接套用公式的呢?理想状态下的公式直接
运用,
在生产及生活中的实例是少之又少。
为此学生总感到学了数学没有什么实际用处,
所
以对学习数学少有兴趣。
数学建模的引入对培养学生利用数学方法分析、
解决实际问题的能
力开辟了一条有效的途径,让中职学生从中体会到数学是来源于生活并应用于生活的
.
数学建模是一种思维方式,它是一个动态的过程,通过此过程可以将一个实际的问题,
经过模型准备、模型假设、模型构成、模型解析、模型检验与应用等五个具体步骤,转变为
可以用数学方法
(公式)
来解决的,
在理想状态下的数学问题,上述的整个流程统称为
数学
建模
如果想解决某个实际问题
(也许它和数学没有直接的关系)
,
可以按下面流程对问题进行
数学建模。
一.
模型准备
先了解该问题的实际背景和建模目的,尽量弄清要建模的问题属于哪
一类学科的问题,
可能需要用到哪些知识,
然后学习或复习有关的知识,
为接下来的数学建
模做准备
.
由于人们所掌握的专业知识是有限的,而实际问题往往是多样和复杂的,模型准
备对做好数学建模问题是非常重要的
.
二.
模型假设
有了模型准备的基础,要想把实际问题变为数学问题还要对其进行必
要合理的简化和假设
.
明确了建模目的又掌握了相关资料,
再去除一些次要因素
.
以主要矛盾
为主来对该实际问题进行适当的简化并提出一些合理的假设。模型假设不太可能一蹴而就,
可以在模型的不断修改中得到逐步完善
.
三.
模型构成
在模型假设的基础上,选择适当的数学工具并根据已知的知识和搜
集的信息来描述变量之间的关系或其他数学结构(如数学公式、定理、算法等)
.
做模型构