java中求中位数_java 计算中位数的实现方法

最近工作需要 要求把python的代码写成java版本,python中有一个np.median()求中位数的方法,java决定手写一个

先说说什么是中位数:

中位数就是中间的那个数,

如果一个集合是奇数个,那么中位数就是按大小排列后,最中间那个数,

如果一个集合是偶数个,那么中位数就是按大小排列后,最中间那2个数的平均数。

比如:

1,2,3,4,5 那中位数就是3

1,2,3,4,5,6 那中位数就是 (3+4)/2 = 3.5

知道逻辑后方法就很简单了 下面是代码

public static void main(String[] args) {

List total = new ArrayList();

total.add(4);

total.add(2);

total.add(3);

total.add(1);

total.add(5);

total.add(6);

double a = median(total);

System.out.println(a);

}

private static double median(List total) {

double j = 0;

//集合排序

Collections.sort(total);

int size = total.size();

if(size % 2 == 1){

j = total.get((size-1)/2);

}else {

//加0.0是为了把int转成double类型,否则除以2会算错

j = (total.get(size/2-1) + total.get(size/2) + 0.0)/2;

}

return j;

}

1. 方法内先判断集合是奇数还是偶数,如果是奇数那么就是第n+1/2个数 ,也就是下标为n-1/2的值,

如果是偶数 就是第n/2和n/2+1的数的平均值 也就是下标为n/2-1和n/2的平均值

2. 该方法传入的是list集合 如果为数组 可以先用Arrays.aslist()方法转换后传入

补充知识:Java计算中位数、方差、标准差、众数

我就废话不多说了,大家还是直接看代码吧~

import java.text.DecimalFormat;

import java.util.*;

/**

* 数学算法(数学算法(方差、标准差、中位数、众数))

* @author

*

*/

public class MathAlgorithm {

private final static double dmax = 999;// Double.MAX_VALUE;//Double类型的最大值,太大的double值,相乘会达到无穷大

private final static double dmin = Double.MIN_VALUE;// Double类型的最小值

private final static int n = 100;// 假设求取100个doubl数的方差和标准差

public static void main(String[] args) {

Random random = new Random();

double[] x = new double[n];

for (int i = 0; i < n; i++) {// 随机生成n个double数

x[i] = Double.valueOf(Math.floor(random.nextDouble() * (dmax - dmin)));

System.out.println(x[i]);

}

// 设置doubl字符串输出格式,不以科学计数法输出

DecimalFormat df = new DecimalFormat("#,##0.00");// 格式化设置

// 计算方差

double dV = getVariance(x);

System.out.println("方差=" + df.format(dV));

// 计算标准差

double dS = getStandardDiviation(x);

System.out.println("标准差=" + df.format(dS));

int[] intArr={5,10,15,8,6};

System.out.println(Arrays.toString(intArr)+" 中位数:"+median(intArr));

int[] intArr2={5,10,15,8,6,7};

System.out.println(Arrays.toString(intArr2)+" 中位数:"+median(intArr2));

int[] arr = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 1, 2, 2, 3, 4, 5};

List modalNums = getModalNums(arr);

System.out.println("众数:"+modalNums);

float[] arr2 = {0.1f, 1.1f, 2.1f, 3.1f, 4.1f, 5.1f, 6.1f, 7.1f, 8.1f, 9.1f, 10.1f, 1.1f, 1.1f, 2.1f, 2.1f, 3.1f, 4.1f, 5.1f};

List modalNums2 = getModalNums(arr2);

System.out.println("众数:"+modalNums2);

}

/**

* 方差s^2=[(x1-x)^2 +...(xn-x)^2]/n

* @param x

* @return

*/

public static double getVariance(double[] x) {

int m = x.length;

double sum = 0;

for (int i = 0; i < m; i++) {// 求和

sum += x[i];

}

double dAve = sum / m;// 求平均值

double dVar = 0;

for (int i = 0; i < m; i++) {// 求方差

dVar += (x[i] - dAve) * (x[i] - dAve);

}

return dVar / m;

}

/**

* 标准差σ=sqrt(s^2)

* @param x

* @return

*/

public static double getStandardDiviation(double[] x) {

int m = x.length;

double sum = 0;

for (int i = 0; i < m; i++) {// 求和

sum += x[i];

}

double dAve = sum / m;// 求平均值

double dVar = 0;

for (int i = 0; i < m; i++) {// 求方差

dVar += (x[i] - dAve) * (x[i] - dAve);

}

return Math.sqrt(dVar / m);

}

/**

* 中位数(int)

* @param nums: A list of integers.

* @return: An integer denotes the middle number of the array.

*/

public static int median(int []nums){

if(nums.length==0)

return 0;

int start=0;

int end=nums.length-1;

int index=partition(nums, start, end);

if(nums.length%2==0){

while(index!=nums.length/2-1){

if(index>nums.length/2-1){

index=partition(nums, start, index-1);

}else{

index=partition(nums, index+1, end);

}

}

}else{

while(index!=nums.length/2){

if(index>nums.length/2){

index=partition(nums, start, index-1);

}else{

index=partition(nums, index+1, end);

}

}

}

return nums[index];

}

private static int partition(int nums[], int start, int end){

int left=start;

int right=end;

int pivot=nums[left];

while(left

while(left=pivot){

right--;

}

if(left

nums[left]=nums[right];

left++;

}

while(left

left++;

}

if(left

nums[right]=nums[left];

right--;

}

}

nums[left]=pivot;

return left;

}

/**

* 中位数(float)

* @param nums: A list of integers.

* @return: An integer denotes the middle number of the array.

*/

public static float median(float []nums){

if(nums.length==0)

return 0;

int start=0;

int end=nums.length-1;

int index=partition(nums, start, end);

if(nums.length%2==0){

while(index!=nums.length/2-1){

if(index>nums.length/2-1){

index=partition(nums, start, index-1);

}else{

index=partition(nums, index+1, end);

}

}

}else{

while(index!=nums.length/2){

if(index>nums.length/2){

index=partition(nums, start, index-1);

}else{

index=partition(nums, index+1, end);

}

}

}

return nums[index];

}

private static int partition(float nums[], int start, int end){

int left=start;

int right=end;

float pivot=nums[left];

while(left

while(left=pivot){

right--;

}

if(left

nums[left]=nums[right];

left++;

}

while(left

left++;

}

if(left

nums[right]=nums[left];

right--;

}

}

nums[left]=pivot;

return left;

}

/**

* 众数(int)

* 众数:在一个数组中出现次数最多的数

* 如果存在多个众数,则一起返回

* @param arr

* @return

*/

public static List getModalNums(int[] arr) {

int n = arr.length;

if (n == 0) {

return new ArrayList();

}

if (n == 1) {

return Arrays.asList(arr[0]);

}

Map freqMap = new HashMap<>();

for (int i = 0; i < n; i++) { // 统计数组中每个数出现的频率

Integer v = freqMap.get(arr[i]);

// v == null 说明 freqMap 中还没有这个 arr[i] 这个键

freqMap.put(arr[i], v == null ? 1 : v + 1);

}

// 将 freqMap 中所有的键值对(键为数,值为数出现的频率)放入一个 ArrayList

List> entries = new ArrayList<>(freqMap.entrySet());

// 对 entries 按出现频率从大到小排序

Collections.sort(entries, new Comparator>() {

@Override

public int compare(Map.Entry e1, Map.Entry e2) {

return e2.getValue() - e1.getValue();

}

});

List modalNums = new ArrayList<>();

modalNums.add(entries.get(0).getKey()); // 排序后第一个 entry 的键肯定是一个众数

int size = entries.size();

for (int i = 1; i < size; i++) {

// 如果之后的 entry 与第一个 entry 的 value 相等,那么这个 entry 的键也是众数

if (entries.get(i).getValue().equals(entries.get(0).getValue())) {

modalNums.add(entries.get(i).getKey());

} else {

break;

}

}

return modalNums;

}

/**

* 众数(float)

* 众数:在一个数组中出现次数最多的数

* 如果存在多个众数,则一起返回

* @param arr

* @return

*/

public static List getModalNums(float[] arr) {

int n = arr.length;

if (n == 0) {

return new ArrayList();

}

if (n == 1) {

return Arrays.asList(arr[0]);

}

Map freqMap = new HashMap<>();

for (int i = 0; i < n; i++) { // 统计数组中每个数出现的频率

Integer v = freqMap.get(arr[i]);

// v == null 说明 freqMap 中还没有这个 arr[i] 这个键

freqMap.put(arr[i], v == null ? 1 : v + 1);

}

// 将 freqMap 中所有的键值对(键为数,值为数出现的频率)放入一个 ArrayList

List> entries = new ArrayList<>(freqMap.entrySet());

// 对 entries 按出现频率从大到小排序

Collections.sort(entries, new Comparator>() {

@Override

public int compare(Map.Entry e1, Map.Entry e2) {

return e2.getValue() - e1.getValue();

}

});

List modalNums = new ArrayList<>();

modalNums.add(entries.get(0).getKey()); // 排序后第一个 entry 的键肯定是一个众数

int size = entries.size();

for (int i = 1; i < size; i++) {

// 如果之后的 entry 与第一个 entry 的 value 相等,那么这个 entry 的键也是众数

if (entries.get(i).getValue().equals(entries.get(0).getValue())) {

modalNums.add(entries.get(i).getKey());

} else {

break;

}

}

return modalNums;

}

}

以上这篇java 计算中位数的实现方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持聚米学院。

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页