
最近做过六角蜂窝格子(honeycomb lattice)上的一些紧束缚(tight-binding, TB)模型,以前上学时算石墨烯没弄明白的几个问题也大概弄懂了,在这里分享一下。大致分为四个部分:
- 首先是honeycomb lattice傅里叶变换(FT)的两种规范,其中一种更简单,得到的TB哈密顿量也满足布里渊区的平移不变性。
- 介绍一下什么是honeycomb lattice对应的“砖块格子”(brick lattice)。对不熟悉的人来说六角格子还是有点复杂,但其实可以将其拉成等价的像砖块一样的方格子,看起来更简单。
- 介绍一下honeycomb lattice取开放边界时三种不同取法,以及对应的不同形态的边界态。
- 介绍怎么计算开边界的厚板(slab)模型。可以直接写出N层的slab哈密顿量来对角化,或者用表面格林函数方法严格解。
1. Honeycomb lattice 傅里叶变换的两种规范
Honeycomb lattice有A,B两套子格子,每套格子内部有平移不变性。这也就是说每个原胞内有A,B两个site(图中蓝框里是一个原胞)。设原胞内AB距离为a,选取原胞基矢为

只考虑最近邻跃迁时,
第一种FT规范:
FT的变换因子
第二种FT规范:
其中B的FT变换因子里多了一项
在第一种FT规范下,
其中
在第二种FT规范下,
能带作为可观测量,不依赖于规范的选取。设
Dirac点出现在布里渊区边界点
但第一种FT规范下,因为
以上推导是用产生消灭算符来写的,产生算符
设六角格子每个点只有一个电子,轨道波函数为
式中
将两个Bloch轨道简记为
其中
式中
哈密顿量解出来的波函数实际是两个Bloch轨道的组合系数。如果要考虑波函数的对称性,还需要考虑所选取轨道的对称性。
2. Honeycomb lattice对应的“砖块格子”(brick lattice)
六角格子看起来有点复杂,尤其是不容易切出一块来,让它还能周期连接。这里介绍一下所谓的brick lattice,就是把六角格子拉平了,方便用直角坐标写出每个节点位置,想要周期连接或者取开边界也容易看。
以下面两张图为例,分别是brick lattice和对应的Honeycomb lattice。图中画了4*4个原胞(3*3个六边形),蓝色框是一个原胞,每个原胞用
每个原胞的位置为
当原胞基矢取不同规范时,相应的六角格子和砖块格子的形状也会发生变化。


3. 六角格子开放边界的不同取法
六角格子可以取zigzag, bearded, armchair等边界条件,并且对应不同的边界态,可以参考文章:
Ryu S, Hatsugai Y. Topological origin of zero-energy edge states in particle-hole symmetric systems[J]. Physical review letters, 2002, 89(7): 077002.

待续。。
4. Slab模型求解
对二维系统,如果x方向是周期的,y方向取N层的开边界,考虑两带模型,这样波函数为
其中每个
H= np.kron(np.diag(np.ones(N)),H0) +
np.kron(np.diag(np.ones(N-1),1),H1) +
np.kron(np.diag(np.ones(N-1),-1),np.conjugate(np.transpose(H1)))
以前面的Honeycomb模型为例,取格矢
第n层A、B格点波函数满足的方程可以显式写出:
参考前面的brick lattice,第一个关于A的方程里,
表面格林函数严格求解:待续。。