vecm模型怎么写系数_六角蜂窝格子紧束缚模型的计算

本文详细介绍了六角蜂窝格子紧束缚模型的计算,包括傅里叶变换的两种规范,砖块格子的概念,开放边界的处理方式以及Slab模型的求解方法,深入探讨了其在量子物理中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

38eda54593b73a6ef2da0275aeee31a1.png

最近做过六角蜂窝格子(honeycomb lattice)上的一些紧束缚(tight-binding, TB)模型,以前上学时算石墨烯没弄明白的几个问题也大概弄懂了,在这里分享一下。大致分为四个部分:

  1. 首先是honeycomb lattice傅里叶变换(FT)的两种规范,其中一种更简单,得到的TB哈密顿量也满足布里渊区的平移不变性。
  2. 介绍一下什么是honeycomb lattice对应的“砖块格子”(brick lattice)。对不熟悉的人来说六角格子还是有点复杂,但其实可以将其拉成等价的像砖块一样的方格子,看起来更简单。
  3. 介绍一下honeycomb lattice取开放边界时三种不同取法,以及对应的不同形态的边界态。
  4. 介绍怎么计算开边界的厚板(slab)模型。可以直接写出N层的slab哈密顿量来对角化,或者用表面格林函数方法严格解。

1. Honeycomb lattice 傅里叶变换的两种规范

Honeycomb lattice有A,B两套子格子,每套格子内部有平移不变性。这也就是说每个原胞内有A,B两个site(图中蓝框里是一个原胞)。设原胞内AB距离为a,选取原胞基矢为

,对应的倒空间基矢为

597e97569e854be7a5805ee098ba70dc.png
Honeycomb lattice的晶格和布里渊区示意图

只考虑最近邻跃迁时,

。以图中A点为例,有三个最近邻B点,平移矢量分别为
。于是,

第一种FT规范:


FT的变换因子
就是格点A或者B的坐标。

第二种FT规范:


其中B的FT变换因子里多了一项
,是A到B的平移矢量。B的坐标减去
就是同一原胞内A的坐标。也就是说,在这种规范下,只把原胞的位置(即A的位置)作为FT的变换因子,忽略原胞内部细节,将B视为与A处于同一位置。这相当于做了规范变换
,不影响物理可观测量(比如能带)。

在第一种FT规范下,

,哈密顿量FT之后变为:


其中

在第二种FT规范下,

。容易看出,因为
,此时
满足布里渊区的周期边条件:
。而第一种FT规范下
,因为

能带作为可观测量,不依赖于规范的选取。设

,两种规范下色散都是

Dirac点出现在布里渊区边界点

但第一种FT规范下,因为

,所以求出来的波函数也没有周期性:
。在计算陈数时,如果波函数在布里渊区边界不连续,则需要额外考虑不连续性带来的积分贡献。(Bernevig的拓扑教材Graphene那一章开头也讲到了这个规范变换,不过说的比较简略。)

以上推导是用产生消灭算符来写的,产生算符

指的是在
处的a点产生一个电子,
则是消灭一个电子。这里已经预先选取了电子的轨道,hopping强度
取决于轨道的交叠积分。下面直接用原子轨道来写,更容易理解一些。

设六角格子每个点只有一个电子,轨道波函数为

,将其组合成Bloch波函数(也就是FT):

式中
是每个原胞的坐标(也就是A点的位置),
是B点的位置(
是A到B的平移矢量),这样组合出来的Bloch波函数就分别对应A点和B点的波函数。注意到Bloch组合系数
是原胞坐标,所以对应前面说的第二种FT规范。

将两个Bloch轨道简记为

。总的波函数是这两个轨道的线性组合:
,本征方程为
。左边分别乘以两个Bloch轨道,将方程化为矩阵的形式:

其中
。当只考虑最近邻相互作用时,因为同种原子没有最近邻,对角项
只有同个原胞内轨道的交叠的贡献,
为常数。非对角项有三个最近邻原胞非同种原子的贡献:

式中
表示三个最近邻,
是交叠积分,所以
。上面推导第二个等号中
,因为
遍历所有格矢,当固定
时,
只是
的一个重新排列,所以可以将对n求和改为
求和。S矩阵可设为单位矩阵。这样,除了多了一个常数矩阵
(只上下平移能带,不改变形状),哈密顿量化为与之前完全相同的形式。

哈密顿量解出来的波函数实际是两个Bloch轨道的组合系数。如果要考虑波函数的对称性,还需要考虑所选取轨道的对称性。


2. Honeycomb lattice对应的“砖块格子”(brick lattice)

六角格子看起来有点复杂,尤其是不容易切出一块来,让它还能周期连接。这里介绍一下所谓的brick lattice,就是把六角格子拉平了,方便用直角坐标写出每个节点位置,想要周期连接或者取开边界也容易看。

以下面两张图为例,分别是brick lattice和对应的Honeycomb lattice。图中画了4*4个原胞(3*3个六边形),蓝色框是一个原胞,每个原胞用

标记。上边和右边红色的边是周期连接的边,连到下边和左边(为了方便看,第二张图里还用红色虚线画出了连过去的位置)。

每个原胞的位置为

是原胞在六角格子里的真实坐标,
是brick lattice里的坐标。做FT时只需要用
即可。

当原胞基矢取不同规范时,相应的六角格子和砖块格子的形状也会发生变化。

12fef0f49b91e0631e49fd7413516b3c.png

05a1360a806d786323ebccf405a8c083.png

3. 六角格子开放边界的不同取法

六角格子可以取zigzag, bearded, armchair等边界条件,并且对应不同的边界态,可以参考文章:
Ryu S, Hatsugai Y. Topological origin of zero-energy edge states in particle-hole symmetric systems[J]. Physical review letters, 2002, 89(7): 077002.

2fd6bfbe7f4a1af8e16dff5ca363a972.png

待续。。

4. Slab模型求解

对二维系统,如果x方向是周期的,y方向取N层的开边界,考虑两带模型,这样波函数为

,其中下标数字表示y方向第n层。写出来的slab哈密顿量就是一个
维的矩阵(只考虑相邻层的耦合):

其中每个
矩阵,对角元
是描述每层内部的哈密顿量,上次对角元
描述与上面一层的耦合,下次对角元
描述与下面一层的耦合,其余矩阵元都为0。
是N维单位矩阵,
)是上(下)次对角线为1的N维矩阵。
很容易从原来周期系统中读出来。这样一个矩阵可以很方便地用代码(python)写出来:
H= np.kron(np.diag(np.ones(N)),H0) + 
   np.kron(np.diag(np.ones(N-1),1),H1) + 
   np.kron(np.diag(np.ones(N-1),-1),np.conjugate(np.transpose(H1)))

以前面的Honeycomb模型为例,取格矢

方向周期,
方向开边界,则有

第n层A、B格点波函数满足的方程可以显式写出:


参考前面的brick lattice,第一个关于A的方程里,
项表示与同一个原胞内B之间跃迁,
项表示与左边相邻原胞内B的跃迁(所以要乘上Bloch因子,表示向左平移一个原胞里B的波函数),
项表示与下面一层的B的跃迁。

表面格林函数严格求解:待续。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值