七大实数理论简介
(一)确界原理
定义1.1:
![]()
是一个非空数集,
![]()
是一个常数,若
![]()
,有
![]()
,则称
![]()
是数集
![]()
的一个上界。同理,若
![]()
,有
![]()
,则称
![]()
是数集
![]()
的一个下界。
定义1.2:若
![]()
是数集
![]()
的一个上界,并且有
![]()
,
![]()
,满足
![]()
,则称
![]()
是数集
![]()
的上确界。类似的,若
![]()
是数集
![]()
的一个下界,并且有
![]()
,
![]()
,满足
![]()
,则称
![]()
是数集
![]()
的下确界。
定理1.1:若数集
![]()
有上确界,则上确界是唯一的。
证明:使用反证法,若
![]()
是数集
![]()
的上确界,假设还有
![]()
也是上确界。
若
![]()
,根据定义1.2的否定,取
![]()
,此时
![]()
,有
![]()
,有
![]()
,因此
![]()
不是数集
![]()
的上确界。
若
![]()
,根据定义1.2,取
![]()
,那么
![]()
,使得
![]()
,因此
![]()
不是数集
![]()
的上确界。
综上所述,
![]()
,上确界唯一。
类似的,我们有:
定理1.2:若数集
![]()
有下确界,则下确界是唯一的。
定理1.3:若数集
![]()
的下确界为
![]()
,定义数集
![]()
, 那么数集
![]()
的上确界是
![]()
。
证明:由于
![]()
是数集
![]()
的下界,根据定义1.1,有
![]()
,
![]()
,
![]()
是数集
![]()
的上界。根据定义1.2有
![]()
,
![]()
,满足
![]()
,也就
![]()
,满足
![]()
。因此
![]()
是数集
![]()
的上确界。
类似的,我们有:
定理1.4:若数集
![]()
的上确界为
![]()
,定义集合
![]()
, 那么数集
![]()
的下确界是
![]()
。
在定理1.3的证明过程中我们可以得到如下结论:
定理1.5:若
![]()
是数集
![]()
的下界,定义数集
![]()
, 那么
![]()
是数集
![]()
的上界。
定理1.6:若
![]()
是数集
![]()
的上界,定义数集
![]()
, 那么
![]()
是数集
![]()
的下界。
定理1.7(确界原理):有上界的非空数集必有上确界。
推论:有下界的非空数集必有下确界。
证明:设
![]()
是数集
![]()
的一个下界,定义数集
![]()
, 根据定理1.5,
![]()
是数集
![]()
的上界。再根据定理1.7(确界原理),数集
![]()
必有上确界
![]()
,再根据定理1.4,数集B的下确界为
![]()
。
注:确界原理可以被看做公理,它是实数的连续性或完备性的体现,即实数包含了数轴上所有的点,没有空隙。数集
![]()
的上确界常被记作
![]()
,下确界记作
![]()
。
(二)区间套定理
定理2.1(区间套定理):数列
![]()
和
![]()
构成闭区间列
![]()
,满足
(1)
![]()
有
(2)
则区间列
![]()
,存在唯一公共点
![]()
,且
![]()
。
注:该定理闭区间条件必不可少,例如区间列
![]()
和
![]()
都不存在公共点
![]()
。
(三)单调有界原理
定义3.1:若一个数集既有上界,又有下界,则称这个数集有界。
定理3.1(单调有界原理):单调有界的数列必有极限。
注:后面我们会证明,若数列单调递增,则极限为上确界,若单调递减,则极限为下确界。
(四)柯西收敛原理
定理4.1(柯西收敛准则):若对于数列
![]()
,
![]()
,
![]()
,当
![]()
时,对一切自然数
![]()
,有
![]()
。则数列
![]()
收敛。
定理4.2(柯西收敛准则逆命题)若数列
![]()
收敛,则
![]()
,
![]()
,当
![]()
时,对一切自然数
![]()
,有
![]()
。
证明:设
![]()
,根据极限定义,
![]()
,,
![]()
,当
![]()
时,
![]()
,同时因为
![]()
,也有
![]()
。因此
![]()
。得证。
注:多数教科书上把以上两个命题称为柯西收敛准则,笔者认为这是不妥的。定理4.2的证明完全来自于极限的定义,不依赖与其他六个实数理论中的任何一个,与他们不能互推。因此,柯西收敛准则在本文中指的就是定理4.1。
(五)致密性定理
定义5.1:在一个数列中,按原顺序任意选出无穷多项,构成一个新的数列。这个新的数列称为原数列的子列。
定理5.1(致密性定理):有界数列必有收敛子列。
(六)聚点定理
定义6.1:
![]()
,开区间
![]()
称为
![]()
的
![]()
邻域,记作
![]()
,
![]()
称作该邻域的半径。
定义6.2:
![]()
,
![]()
称为
![]()
的去心
![]()
邻域,记作
![]()
。
定义6.3:设
![]()
是数集,实数
![]()
满足,
![]()
,满足
![]()
,则称
![]()
为
![]()
的聚点。
定理6.1(聚点定理):有界无穷点集至少有一个聚点。
定理6.2:若
![]()
为
![]()
的聚点,则
![]()
的任何
![]()
邻域均包含无限个
![]()
中的点。
证明:假设
![]()
的任何
![]()
邻域仅仅包含
![]()
个
![]()
中的点,记作
![]()
,令
![]()
,则有
![]()
,
![]()
不是聚点。
(七)有限覆盖定理
定理7.1(有限覆盖定理):若开区间所成的区间集
![]()
覆盖闭区间
![]()
,则可以从
![]()
中选出有限个区间覆盖
![]()
。
注:区间集
![]()
必须为开区间集,否则集合不能成立。
七大实数理论互推
(一)确界原理
![]()
(三)单调有界定理
定理3.1(单调有界原理):单调有界的数列必有极限。
不妨设数列
![]()
单调递增。显然它有上界,根据确界原理,记上确界为
![]()
。
根据上确界的定义,
![]()
,
![]()
,由于单调递增,
![]()
时有
![]()
。同时显然有
![]()
。故
![]()
成立,故
![]()
的极限就是上确界
![]()
。
同理可证,当
![]()
单调递减时,极限为下确界。
(三)单调有界定理
![]()
(二)区间套定理
定理2.1(区间套定理):数列
![]()
和
![]()
构成闭区间列
![]()
,满足
(1)
![]()
有
(2)
则区间列
![]()
,存在唯一公共点
![]()
,且
![]()
。
由于
![]()
单调递减,
![]()
单调递增,且
![]()
,根据单调有界原理,两个数列的极限均存在。
![]()
。显然两者极限相等,记为
![]()
,并且
![]()
为
![]()
的下确界,
![]()
的上确界。故有
![]()
。
若
![]()
不唯一,假设有
![]()
,由夹逼定理得,
![]()
,故
![]()
,因此
![]()
唯一。
(二)区间套定理
![]()
(一)确界原理
定理1.7(确界原理):有上界的非空数集必有上确界。
设
![]()
为任一非空有上界数集,若实数
![]()
是
![]()
的最大值,可以验证
![]()
就是上确界。
若
![]()
没有最大值,则随意取
![]()
,
![]()
为
![]()
的任一上界。若
![]()
为上界,则令
![]()
,
![]()
,反之,则令
![]()
,
![]()
这样依次取得数列
![]()
和
![]()
,构成区间套
![]()
,且
![]()
。根据区间套定理,存在唯一
![]()
,使
![]()
。
由于
![]()
是上界,
![]()
有
![]()
,两侧取极限有
![]()
。故
![]()
是
![]()
的上界。
由于
![]()
,
![]()
,有
![]()
,使得
![]()
时有
![]()
,又因为
![]()
不是上界,故
![]()
,有
![]()
。因此
![]()
是上确界。
(二)区间套定理
![]()
(五)致密性定理
定理5.1(致密性定理):有界数列必有收敛子列。
设
![]()
为一有界数列,有
![]()
,将区间
![]()
分成
![]()
和
![]()
两部分,显然至少一个区间包含无穷多项,取那个区间的下界记作
![]()
,上界记作
![]()
。在该区间任取一项记作
![]()
。依次取下去得到数列
![]()
和
![]()
和闭区间列
![]()
,且
![]()
。根据区间套定理,
![]()
,由于每一个区间包含无穷多项,因而可以取到完整的子列
![]()
,并且有
![]()
,根据夹逼定理有
![]()
。
(二)区间套定理
![]()
(六)聚点定理
定理6.1(聚点定理):有界无穷点集至少有一个聚点。
证明方法与上面一个类似。
(二)区间套定理
![]()
(七)有限覆盖定理
定理7.1(有限覆盖定理):若开区间所成的区间集
![]()
覆盖闭区间
![]()
,则可以从
![]()
中选出有限个区间覆盖
![]()
。
假设区间
![]()
不能被
![]()
中有限个开区间覆盖,则将区间
![]()
分成
![]()
和
![]()
两部分,至少有一个不能被有限个开区间覆盖,记为
![]()
,这样依次等分,得到一区间列
![]()
,不难验证该区间列满足区间套定理的使用条件,因而有
![]()
。由于
![]()
能覆盖闭区间
![]()
,因此存在开区间
![]()
,有
![]()
,由数列极限的定义,
![]()
,当
![]()
时有
![]()
。即
![]()
。与假设矛盾。
(五)致密性定理
![]()
(四)柯西收敛原理
定理4.1(柯西收敛准则):若对于数列
![]()
,
![]()
,
![]()
,当
![]()
时,对一切自然数
![]()
,有
![]()
。则数列
![]()
收敛。
取
![]()
,
![]()
,当
![]()
时,对一切自然数
![]()
,有
![]()
。取
![]()
。则有
![]()
时有
![]()
,因此
![]()
有界。由致密性定理,
![]()
存在收敛子列
![]()
,不妨设
![]()
。根据极限定义,
![]()
,
![]()
,当
![]()
时有
![]()
,再考虑柯西列的定义,
![]()
,当
![]()
时有
![]()
,从而当上述两条件均满足时有
![]()
,故数列
![]()
收敛。
(四)柯西收敛原理
![]()
(二)区间套定理
设闭区间列
![]()
,满足
(1)
![]()
有
(2)
由条件(2),
![]()
,
![]()
,当
![]()
时有,
![]()
。对一切自然数
![]()
,有
![]()
,因而有
![]()
,
![]()
。由柯西收敛准则,数列
![]()
和
![]()
都收敛。再根据
![]()
。有
![]()
。由于极限的唯一性,
![]()
唯一。
(五)致密性定理
![]()
(六)聚点定理
设点集
![]()
为一有界无穷点集,依次任取
![]()
中不重复的点构成数列
![]()
,根据致密性定理,必存在收敛子列满足
![]()
,由极限定义,
![]()
,
![]()
,使
![]()
时有
![]()
,因而
![]()
是聚点。
(六)聚点定理
![]()
(五)致密性定理
设数列
![]()
有界,显然可以看做一无穷点集,根据聚点定理,至少存在一个聚点
![]()
。依次从
![]()
的
![]()
邻域中取一项,记作
![]()
,根据定理6.2,可以无限取下去构成子列
![]()
,且有
![]()
,易证 S
![]()
。
(七)有限覆盖定理
![]()
(六)聚点定理
设
![]()
为一有界无限点集,
![]()
,
![]()
。假设
![]()
没有聚点,即
![]()
,在
![]()
的
![]()
去心领域内只包含有限多项,这些领域可以构成开区间集
![]()
,根据有限覆盖定理,该开覆盖必有有限子覆盖
![]()
能够覆盖区间
![]()
。然而
![]()
中的有限个开区间必然只包含有限个
![]()
中的点,与已知矛盾。
(七)有限覆盖定理
![]()
(五)致密性定理
将数列看作无穷点集,证明与上类似。
至此,我们完成了七大实数理论的连接,即从任何一个实数理论出发可以推出其它六个定理(如文章开始的图所示)。
该图所展示的逻辑架构为多数国内数学分析教材的论证过程,事实上,任何两个实数理论之间均可以互推,具体内容如下:
乌兰巴托海军:七大实数理论互推完整版zhuanlan.zhihu.com
一下这篇文章讲述了实数理论在数学分析中的应用:
乌兰巴托海军:实数理论的基本应用zhuanlan.zhihu.com