作者称这是第一次探索边界表示以实现准确的实例分割,B2Inst+BlendMask 表现SOTA!性能优于Blendmask、PointRend和CondInst等网络。
The Devil is in the Boundary: Exploiting Boundary Representation for Basis-based Instance Segmentation
注1:文末附【图像分割】交流群
B2Inst

作者单位:KAIST(韩国科学技术院)
论文:The Devil is in the Boundary: Exploiting Boundary Representation for Basis-based Instance Segmentation
为了对实时视觉应用更加一致的场景理解,单阶段实例分割最近变得越来越流行,与两阶段实例分割相比,它实现了更简单,更高效的设计。
此外,其全局mask表示通常会导致迄今为止占主导地位的两阶段Mask R-CNN的准确性更高。尽管单阶段方法取得了不错的进展,但实例边界的更精细分割仍然未被挖掘。实际上,边界信息提供了强大的形状表示形式,可以与单级分割器的全卷积蒙版特征协同工作。
在这项工作中,我们提出了基于边界基础的实例分割(B2Inst),以学习一种全局边界表示,它可以补充通常缺乏高频细节的现有基于全局掩码的方法。

此外,我们设计了一个统一的掩膜和边界质量度量方法,并引入了一个网络模块,该模块学习对自己的每个实例预测进行评分。如果将B2Inst应用于单阶段实例分割中最强的基准,则可以不断改进并准确地解析场景中的实例边界。



实验结果

不管是单阶段还是两阶段框架,我们在具有相同ResNet-50和ResNet-101主干的COCO数据集上都优于现有的最新方法。


CVer-图像分割交流群
建了CVer-图像分割交流群!想要进分割学习交流群的同学,可以直接加微信号:CVer6666。加的时候备注一下:图像分割+学校+昵称,即可。然后就可以拉你进群了。
强烈推荐大家关注CVer知乎账号和CVer微信公众号,可以快速了解到最新优质的CV论文。
推荐阅读
缺陷检测比赛Top3方案分享
2020年度arXiv十大热门论文来了!YOLOv4、SimCLR和GPT-3均上榜
Papers with Code 2020 全年回顾(顶流论文+顶流代码+Benchmarks)
美团提出VisTR:基于Transformers的端到端视频实例分割
又一篇视觉Transformer综述来了!
深度神经网络中的池化方法:全面调研(1989-2020)
OsC Los:用于医学图像分割中不平衡问题的偏移曲线损失
AAAI 2021 | GET:基于Transformer的图像描述
基于GAN的图像合成技术:全面调研和案例研究(2014-2020)
涨点神器!IC-Conv:具有高效空洞搜索的Inception卷积
一文快速回顾U-Net Family
发顶会论文,怎么就那么难?(附三位研究员的经验分享,助力你的科研)
基于深度学习的人体姿态估计综述:全面调研(2014-2020)
基于深度学习的基于内容的图像检索技术:十年调研(2011-2020)
亚马逊李沐团队提出:行为识别的全面调研(2014-2020)
你的NMS该换了!Confluence:实现更准、更强的目标检测
冠军解决方案!用于脑肿瘤分割的nnU-Net改进
综述 | 对比自监督学习技术:全面调研
使用PyTorch时,最常见的4个错误
涨点技巧!汇集13个Kaggle图像分类项目的性能提升指南
综述 | MIT提出视频理解/行为识别:全面调研(2004-2020)
旷视提出MegDetV2:目标检测/实例分割系统
综述 | 基于深度学习的实时语义分割方法:全面调研
涨点神器!南航提出AFF:注意力特征融合