高二计算机原理公开课教案,公开课教案 高二数学叶海霞

本文讲解了函数的最大值和最小值的概念,以及如何利用导数来求解这些问题。介绍了函数最值与极值的区别与联系,并给出了具体的求解步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

§ 1.3.3函数的最大(小)值与导数(第1课时)

教学目标:

⒈使学生理解函数的最大值和最小值的概念,掌握可导函数 在闭区间 上所有点(包括端点

)处的函数中的最大(或最小)值必有的充分条件;

⒉使学生掌握用导数求函数的极值及最值的方法和步骤

教学重点:利用导数求函数的最大值和最小值的方法.

教学难点:函数的最大值、最小值与函数的极大值和极小值的区别与联系.

教学过程:

一.创设情景

我们知道,极值反映的是函数在某一点附近的局部性质,而不是函数在整个定义域内的性质.也就是说,如果

是函数

的极大(小)值点,那么在点

附近找不到比

更大(小)的值.但是,在解决实际问题或研究函数的性质时,我们更关心函数在某个区间上,哪个至最大,哪个值最小.如果

是函数的最大(小)值,那么

不小(大)于函数

在相应区间上的所有函数值.

二.新课讲授

观察图中一个定义在闭区间

上的函数的图象.图中 与 是极小值, 是极大值.函数 在 上的最大值是 ,最小值是 .

1.结论:一般地,在闭区间上函数

的图像是一条连续不断的曲线,那么函数 在 上必有最大值与最小值.

说明:⑴如果在某一区间上函数的图像是一条连续不断的曲线,则称函数

在这个区间上连续.(可以不给学生讲)

⑵给定函数的区间必须是闭区间,在开区间内连续的函数

不一定有最大值与最小值.如函数 在 内连续,但没有最大值与最小值;

⑶在闭区间上的每一点必须连续,即函数图像没有间断,

⑷函数

在闭区间上连续,是 在闭区间 上有最大值与最小值的充分条件而非必要条件.(可以不给学生讲)

2.“最值”与“极值”的区别和联系

⑴最值”是整体概念,是比较整个定义域内的函数值得出的,具有绝对性;而“极值”是个局部概念,是比较极值点附近函数值得出的,具有相对性.

⑵从个数上看,一个函数在其定义域上的最值是唯一的;而极值不唯一;

⑶函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个

⑷极值只能在定义域内部取得,而最值可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.

3.利用导数求函数的最值步骤:

由上面函数的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.

一般地,求函数

在上的最大值与最小值的步骤如下:

⑴求 在 内的极值;

⑵将 的各极值与端点处的函数值

、比较,其中最大的一个是最大值,最小的一个是最小值,得出函数 在 上的最值

三.典例分析

例1.(课本例5)求 在

的最大值与最小值

解:

由例4可知,在 上,当

时, 有极小值,并且极小值为 ,又由于 ,

因此,函数 在

的最大值是4,最小值是

上述结论可以从函数 在

上的图象得到直观验证.

四.课堂练习

1.下列说法正确的是(

)

A.函数的极大值就是函数的最大值

B.函数的极小值就是函数的最小值

C.函数的最值一定是极值D.在闭区间上的连续函数一定存在最值

2.函数y=f(x)在区间[a,b]上的最大值是M,最小值是m,若M=m,则f′(x) (

)

A.等于0

B.大于0

C.小于0

D.以上都有可能

3.函数y= ,在[-1,1]上的最小值为(

)

A.0

B.-2 C.-1

D.

4.求函数

在区间

上的最大值与最小值.

5.课本

练习

五.回顾总结

1.函数在闭区间上的最值点必在下列各种点之中:导数等于零的点,导数不存在的点,区间端点;

2.函数 在闭区间 上连续,是

在闭区间上有最大值与最小值的充分条件而非必要条件;

3.闭区间 上的连续函数一定有最值;开区间 内的可导函数不一定有最值,若有唯一的极值,则此极值必是函数的最值

4.利用导数求函数的最值方法.

六.布置作业

【资源说明】 1.项目代码功能经验证ok,确保稳定可靠运行。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通。 2.主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师或企业员工使用。 3.项目具有丰富的拓展空间,不仅可作为入门进阶,也可直接作为毕设、课程设计、大作业、初期项目立项演示等用途。 4.当然也鼓励大家基于此进行次开发。 5.期待你能在项目中找到乐趣和灵感,也欢迎你的分享和反馈! 本文介绍了基于QEM(Quadric Error Metrics,次误差度量)的优化网格简化算法的C和C++实现源码及其相关文档。这一算法主要应用于计算机图形学领域,用于优化三维模型的多边形数量,使之在保持原有模型特征的前提下实现简化。简化的目的是为了提渲染速度,减少计算资源消耗,以及便于网络传输等。 本项目的核心是网格简化算法的实现,而QEM作为该算法的核心,是一种衡量简化误差的数学方法。通过计算每个顶点的次误差矩阵来评估简化操作的误差,并以此来指导网格简化过程。QEM算法因其效性和准确性在计算机图形学中广泛应用,尤其在实时渲染和三维打印领域。 项目代码包含C和C++两种语言版本,这意味着它可以在多种开发环境中运行,增加了其适用范围。对于计算机相关专业的学生、教师和行业从业者来说,这个项目提供了丰富的学习和实践机会。无论是作为学习编程的入门材料,还是作为深入研究计算机图形学的项目,该项目都具有实用价值。 此外,项目包含的论文文档为理解网格简化算法提供了理论基础。论文详细介绍了QEM算法的原理、实施步骤以及与其他算法的对比分析。这不仅有助于加深对算法的理解,也为那些希望将算法应用于自己研究领域的人员提供了参考资料。 资源说明文档强调了项目的稳定性和可靠性,并鼓励用户在使用过程中提出问题或建议,以便不断地优化和完善项目。文档还提醒用户注意查看,以获取使用该项目的所有必要信息。 项目的文件名称列表中包含了加水印的论文文档、资源说明文件和实际的项目代码目录,后者位于名为Mesh-Simplification-master的目录下。用户可以将这些资源用于多种教学和研究目的,包括课程设计、毕业设计、项目立项演示等。 这个项目是一个宝贵的资源,它不仅提供了一个成熟的技术实现,而且为进一步的研究和学习提供了坚实的基础。它鼓励用户探索和扩展,以期在计算机图形学领域中取得更深入的研究成果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值