§ 1.3.3函数的最大(小)值与导数(第1课时)
教学目标:
⒈使学生理解函数的最大值和最小值的概念,掌握可导函数 在闭区间 上所有点(包括端点
)处的函数中的最大(或最小)值必有的充分条件;
⒉使学生掌握用导数求函数的极值及最值的方法和步骤
教学重点:利用导数求函数的最大值和最小值的方法.
教学难点:函数的最大值、最小值与函数的极大值和极小值的区别与联系.
教学过程:
一.创设情景
我们知道,极值反映的是函数在某一点附近的局部性质,而不是函数在整个定义域内的性质.也就是说,如果
是函数
的极大(小)值点,那么在点
附近找不到比
更大(小)的值.但是,在解决实际问题或研究函数的性质时,我们更关心函数在某个区间上,哪个至最大,哪个值最小.如果
是函数的最大(小)值,那么
不小(大)于函数
在相应区间上的所有函数值.
二.新课讲授
观察图中一个定义在闭区间
上的函数的图象.图中 与 是极小值, 是极大值.函数 在 上的最大值是 ,最小值是 .
1.结论:一般地,在闭区间上函数
的图像是一条连续不断的曲线,那么函数 在 上必有最大值与最小值.
说明:⑴如果在某一区间上函数的图像是一条连续不断的曲线,则称函数
在这个区间上连续.(可以不给学生讲)
⑵给定函数的区间必须是闭区间,在开区间内连续的函数
不一定有最大值与最小值.如函数 在 内连续,但没有最大值与最小值;
⑶在闭区间上的每一点必须连续,即函数图像没有间断,
⑷函数
在闭区间上连续,是 在闭区间 上有最大值与最小值的充分条件而非必要条件.(可以不给学生讲)
2.“最值”与“极值”的区别和联系
⑴最值”是整体概念,是比较整个定义域内的函数值得出的,具有绝对性;而“极值”是个局部概念,是比较极值点附近函数值得出的,具有相对性.
⑵从个数上看,一个函数在其定义域上的最值是唯一的;而极值不唯一;
⑶函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个
⑷极值只能在定义域内部取得,而最值可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.
3.利用导数求函数的最值步骤:
由上面函数的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.
一般地,求函数
在上的最大值与最小值的步骤如下:
⑴求 在 内的极值;
⑵将 的各极值与端点处的函数值
、比较,其中最大的一个是最大值,最小的一个是最小值,得出函数 在 上的最值
三.典例分析
例1.(课本例5)求 在
的最大值与最小值
解:
由例4可知,在 上,当
时, 有极小值,并且极小值为 ,又由于 ,
因此,函数 在
的最大值是4,最小值是
.
上述结论可以从函数 在
上的图象得到直观验证.
四.课堂练习
1.下列说法正确的是(
)
A.函数的极大值就是函数的最大值
B.函数的极小值就是函数的最小值
C.函数的最值一定是极值D.在闭区间上的连续函数一定存在最值
2.函数y=f(x)在区间[a,b]上的最大值是M,最小值是m,若M=m,则f′(x) (
)
A.等于0
B.大于0
C.小于0
D.以上都有可能
3.函数y= ,在[-1,1]上的最小值为(
)
A.0
B.-2 C.-1
D.
4.求函数
在区间
上的最大值与最小值.
5.课本
练习
五.回顾总结
1.函数在闭区间上的最值点必在下列各种点之中:导数等于零的点,导数不存在的点,区间端点;
2.函数 在闭区间 上连续,是
在闭区间上有最大值与最小值的充分条件而非必要条件;
3.闭区间 上的连续函数一定有最值;开区间 内的可导函数不一定有最值,若有唯一的极值,则此极值必是函数的最值
4.利用导数求函数的最值方法.
六.布置作业