echart 固定刻度文字宽度_ctpn:图像文字检测方法

   8f8f3acb10f3d4032d8df58fe689651e.gif

作者: 夏   敏

编辑:黄俊嘉

01

区  别

本文工作基于faster RCNN , 区别在于

1. 改进了rpn,anchor产生的window的宽度固定为3。

2. rpn后面不是直接接全连接+分类/回归,而是再通过一个LSTM,再接全连接层。

3. 坐标仅仅回归一个y,而不是x1, y1, x2, y2

4. 添加 side-refinement offsets(可能这个就是4个回归值中的其中2个)

02

问题分析

1. 文字目标的特殊性,一个很大的先验是,文字总是水平排列的。

2. 文字的特征总感觉体现在edge上。

3. 自然场景文字检测的难点在于:小目标,遮挡,仿射畸变。本文使用VGG16,只使用conv5,可能对小文字的检测效果不好。

03

实 验

CTPN用在ICDAR2017中文检测数据集上的结果:AP=0.18

论文的关键idea

文本检测的其中一个难点就在于文本行的长度变化是非常剧烈的。因此如果是采用基于faster rcnn等通用物体检测框架的算法都会面临一个问题:怎么生成好的text proposal。这个问题实际上是比较难解决的。

Detecting Text in Natural Image with Connectionist Text Proposal Network

在这篇文章中作者提供了另外一个思路,检测一个一个小的,固定宽度的文本段,然后再后处理部分再将这些小的文本段连接起来,得到文本行。检测到的文本段的示意图如下图所示。

fef162727ff8f26138c2f08055b1fe44.png

  • 具体的说,作者的基本想法就是去预测文本的竖直方向上的位置,水平方向的位置不预测。因此作者提出了一个vertical anchor的方法。与faster rcnn中的anchor类似,但是不同的是,vertical anchor的宽度都是固定好的了,论文中的大小是16个像素。而高度则从11像素到273像素变化,总共10个anchor.

  • 同时,对于水平的文本行,其中的每一个文本段之间都是有联系的,因此作者采用了CNN+RNN的一种网络结构,检测结果更加鲁棒。RNN和CNN的无缝结合可以提高检测精度。CNN用来提取深度特征,RNN用来序列的特征识别(2类),二者无缝结合,用在检测上性能更好。

  • Top-down(先检测文本区域,再找出文本线)的文本检测方法比传统的bottom-up的检测方法(先检测字符,再串成文本线)更好。自底向上的方法的缺点在于(这点在作者的另一篇文章中说的更清楚),总结起来就是没有考虑上下文,不够鲁棒,系统需要太多子模块,太复杂且误差逐步积累,性能受限。

  • 基于检测的方法能很好地解决水平文字的检测问题,缺点是对于非水平的文字不能检测。具体的做法可以参考Detecting Text in Natural Image with Connectionist Text Proposal Network,ECCV16的一篇论文,网络结构为RPN,针对文字检测的特点做了一些修改,最重要的有两点,一是改变了判断正负样本的方法,不同于物体检测,文字检测中proposal如果只框住了一行文字中的几个文字其实也算正样本,而用IOU计算的话会被当成负样本,所以判断正负样本只需要计算proposal与ground truth高度的overlap就可以了。第二点是anchor的选取,既然我们判断正负样本的时候不考虑宽度,自然选anchor的时候也不用选择不同宽度的了,只需要固定宽度然后根据具体任务选择几个合适的高度就可以了。其他地方和RPN基本一样。

整个算法的流程主要有以下几个步骤:(参见下图)

64bf4f6b968cc327bbb99c419166fa6d.png

  • 首先,使用VGG16作为base net提取特征,得到conv5_3的特征作为feature map,大小是W×H×C

  • 然后在这个feature map上做滑窗,窗口大小是3×3。也就是每个窗口都能得到一个长度为3×3×C的特征向量。这个特征向量将用来预测和10个anchor之间的偏移距离,也就是说每一个窗口中心都会预测出10个text propsoal。

  • 将上一步得到的特征输入到一个双向的LSTM中,得到长度为W×256的输出,然后接一个512的全连接层,准备输出。

  • 输出层部分主要有三个输出。2k个vertical coordinate,因为一个anchor用的是中心位置的高(y坐标)和矩形框的高度两个值表示的,所以一个用2k个输出。(注意这里输出的是相对anchor的偏移)。2k个score,因为预测了k个text proposal,所以有2k个分数,text和non-text各有一个分数。k个side-refinement,这部分主要是用来精修文本行的两个端点的,表示的是每个proposal的水平平移量。

  • 这是会得到密集预测的text proposal,所以会使用一个标准的非极大值抑制算法来滤除多余的box。

  • 最后使用基于图的文本行构造算法,将得到的一个一个的文本段合并成文本行。

04

一些细节

4.1 vertical anchor

k个anchor的设置如下:宽度都是16像素,高度从11~273像素变化(每次乘以1.4)

  • 预测的k个vertical coordinate的坐标如下:

    回归的高度和bounding box的中心的y坐标如下,带*的表示是groundTruth,带a的表示是anchor

  • score阈值设置:0.7 (+NMS)

  • 与真值IoU大于0.7的anchor作为正样本,与真值IoU最大的那个anchor也定义为正样本,这个时候不考虑IoU大小有没有到0.7,这样做有助于检测出小文本。

  • 与真值IoU小于0.5的anchor定义为负样本。

  • 只保留score大于0.7的proposal

4.2 BLSTM

 文章使用了双向的LSTM,每个LSTM有128个隐层

  • 加了RNN之后,整个检测将更加鲁棒,

1e5096def725914cbb8cdeadfd6b84f1.png

4.3 Side-refinement

ab6df3e279c33f5d1f232391c14429ad.png

  • 文本线构造算法(多个细长的proposal合并成一条文本线)

  • 主要思想:每两个相近的proposal组成一个pair,合并不同的pair直到无法再合并为止(没有公共元素)

  • 判断两个proposal,Bi和Bj组成pair的条件:

    1. Bj->Bi, 且Bi->Bj。(Bj->Bi表示Bj是Bi的最好邻居)

    2. Bj->Bi条件1:Bj是Bi的邻居中距离Bi最近的,且该距离小于50个像素

    3. Bj->Bi条件2:Bj和Bi的vertical overlap大于0.7

  • 固定要regression的box的宽度和水平位置会导致predict的box的水平位置不准确,所以作者引入了side-refinement,用于水平位置的regression。where xside is the predicted x-coordinate of the nearest horizontal side (e.g., left or right side) to current anchor. x∗ side is the ground truth (GT) side coordinate in x-axis, which is pre-computed from the GT bounding box and anchor location. cax is the center of anchor in x-axis. wa is the width of anchor, which is fixed, wa = 16 

05

训练

 对于每一张训练图片,总共抽取128个样本,64正64负,如果正样本不够就用负样本补齐。这个和faster rcnn的做法是一样的。

  • 训练图片都将短边放缩到600像素。

06

总 结

这篇文章的方法最大亮点在于把RNN引入检测问题(以前一般做识别)。文本检测,先用CNN得到深度特征,然后用固定宽度的anchor来检测text proposal(文本线的一部分),并把同一行anchor对应的特征串成序列,输入到RNN中,最后用全连接层来分类或回归,并将正确的text proposal进行合并成文本线。这种把RNN和CNN无缝结合的方法提高了检测精度。

07

特  点

不是在字的级别,最终输出是在行的级别

  • 对每一行,每一个feature map位置,固定需要回归的框的宽度为16像素,需要预测k个anchor的高度和数值方向

  • side-refinement用来预测每一个anchor的x的坐标,准确率有效得到提升

08

问  题

  • 没有很好地处理多方向的文本行;

  • 训练的时候由于有regression和LSTM,需要小心控制梯度爆炸。

 f123e2277cd828c67200057b9358ed9f.gif

END

往期回顾之作者夏敏

【1】pytorch模型训练之 loss function选择

【2】深入理解注意力机制

【3】fine-gained image classification

【4】学会用Docker部署深度学习环境

机器学习算法工程师


                            一个用心的公众号

637278ecf0927958733c0b31d9a4c862.png

长按,识别,加关注

进群,学习,得帮助

你的关注,我们的热度,

我们一定给你学习最大的帮助

7b397a8f17ffee36164d630acebc238d.png你点的每个赞,我都认真当成了喜欢
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值