三调数据dlmc显示代码_二调地类和三调地类的对比

e7da66744e69e1ad63a1d53665c3d42c.png

全新的国土空间规划的数据是基于“三调”数据库,及“全国第三次土地调查”。

很多工作人员之前接触到的都是“二调”数据。

网上有很多对于“三调”的背景和任务介绍的文章,在此就不在赘述。可以参考下面的网页:

什么是“三调”​www.jingbian.gov.cn
d49f17abc4ecbad29fd60b7f2448cfdf.png

“三调”和“二调”之间也有很大的差异,三调划分更为精细,在计算土地利用数据的时候,怎么把二调和三调地类数据相结合,也是一个比较麻烦的问题。也有一些人把二调和三调地类进行了对比。下面的表格是从(三调的地类编码与二调的对比-第三次全国土地调查-地信网论坛 -)这个网址下载的,地类的对比还是比较准确。

需要注意的是这个网站下载的二三调中的三调地类和现在使用还是有一点区别(物流仓储用地从06里划入到了05)。不过不影响对比。

参考链接:三调项目最新地类表(2018-10-07)(1) - 百度文库

a8b6b63ff10ed7a71761f48a5a63e6ee.png

ca38200adfb998ea900f51688328f082.png

三调和二调的地类分类差异还是比较明显:

1.林地分类更加精细,原来是3类,现在是7类;

2.草地多了沼泽草地;

3.商服用地、公共管理与公共服务用地和特殊用地对一些地类进行了合并;

4.工矿用地用地中增加了盐田;

5.交通运输用地增加交通服务站用地;

6.沼泽地从原来的其他用地划入到水域及水利设施用地;

7.其他用地增加了裸岩石砾地。

此外:

在“三调”中有K、A、H代码。

K地类主要是可调整地类; H是指对2017现状分类进行了相关的合并形成的新的地类;A的话是指独立于二级地类形成的相关地类,可以等同于二级类。

要实现删除 `OID_`, `Value`, `Count` 这列,并对 `DLMC` 列进行哑变量处理,可以使用 Python Pandas 库。以下是一个示例代码: ```python import pandas as pd from sklearn.preprocessing import OneHotEncoder # 读取数据 data = { 'OID_': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'Value': [2899.0, 1939.0, 20565.0, 1600.0, 1958.0, 23.0, 88.0, 106.0, 177.0, 1288.0], 'Count': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'DLMC': ['水田', '其他林地', '乔木林地', '旱地', '茶园', '竹林地', '其他园地', '其他草地', '坑塘水面', '农村宅基地'] } df = pd.DataFrame(data) # 删除 OID_, Value, Count 列 df.drop(columns=['OID_', 'Value', 'Count'], inplace=True) # 对 DLMC 列进行哑变量处理 one_hot_encoder = OneHotEncoder(sparse=False) one_hot_encoded_data = one_hot_encoder.fit_transform(df[['DLMC']]) # 创建新的 DataFrame 来存储哑变量结果 one_hot_df = pd.DataFrame(one_hot_encoded_data, columns=one_hot_encoder.get_feature_names_out(['DLMC'])) # 将哑变量结果合并到原始 DataFrame 中 result_df = pd.concat([df.drop(columns=['DLMC']), one_hot_df], axis=1) print(result_df) ``` ### 解释 1. **读取数据**:首先创建一个字典来模拟你的数据,并将其转换为 Pandas DataFrame。 2. **删除列**:使用 `drop` 方法删除 `OID_`, `Value`, `Count` 这列。 3. **哑变量处理**:使用 `OneHotEncoder` 对 `DLMC` 列进行哑变量处理。 4. **创建新 DataFrame**:将哑变量结果转换为 DataFrame。 5. **合并结果**:将哑变量结果合并到原始 DataFrame 中,并打印最终结果。 运行上述代码后,你将得到一个新的 DataFrame,其中 `DLMC` 列已经被替换为多个进制列,每个列代表 `DLMC` 列中的一个别。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值