python atm银行取款系统数据流图_第2话 TensorFlow 数据流图———TensorBoard的使用...

本文介绍了TensorFlow中的数据流图概念,它基于有向图进行计算,节点表示运算,边代表数据传递。通过代码展示了如何创建简单的数据流图,并利用TensorBoard进行可视化,帮助理解计算过程。
摘要由CSDN通过智能技术生成

1.1 什么是数据流图

TensorFlow使用符号计算图,这与Theano相似,不过与Theano相比,TensorFlow 更简洁。TensorFlow 的名字本身描述了它自身的执行原理: Tensor (张量)意味着N维数组,Flow (流)意味着基于数据流图的计算。数据流图中的图就是我们所说的有向图,在图这种数据结构中包含两种基本元素:节点和边。这两种元素在数据流图中有自己各自的作用,其中节点代表对数据所做的运算或某种算子(Operation)。另外,任何一种运算都有输人/输出,因此它也可以表示数据输人的起点或输出的终点。而边表示节点与节点之间的输人1输出关系,一种特殊类型的数据沿着这些边传递。这种特殊类型的数据在TensorFlow中被称为Tensor,即张量,所谓的张量通俗点说就是多维数组。

当我们向这种图中输人张量后,节点代表的操作就会被分配到计算设备完成计算,下面就是一个简单的数据流图。

988ee2efd98dbd9441735461f8adafc5.png

1.2 TensorFlow实现数据流图

上面的图写成代码如下所示:

import tensorflow as tf

a = tf.constant(2)

b = tf.constant(4)

c = tf.multiply(a, b)

d = tf.add(a, b)

e = tf.add(c, d)

with tf.Session() as sess:

p

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值