bigdecimal 怎么做除法_一篇文章搞懂多项式因式分解和多项式除法

本文详细介绍了多项式因式分解和多项式除法的基本概念和方法,包括试根法、代数基本定理和因式定理。通过实例解析了如何在复数域内进行因式分解,并探讨了有理根和无理根的处理。此外,还阐述了多项式除法的本质,提供了解决不定积分问题的途径。强调了练习和理解多项式除法的重要性。
摘要由CSDN通过智能技术生成

5ed50d678c3f14cadcc49c8c462b944f.png

1.引言

多项式因式分解和多项式除法应该是同学们初中时所学过的内容,但是,这一重要知识在初中除了作为不能套公式的因式分解的奇技淫巧而外,并没有什么用武之地。但是到了高中和大学,这些知识又是弥足重要的。希望笔者作为一个初中学过这个“奇技淫巧”的人,可以给那些没学过这些东西的同学一个指南。

2.预备知识

2.1代数基本定理(fundamental theorem of algebra)

(其中

则方程

在复数域内有且只有n个根(重根按重数计算)。而且,复数根总是成对出现的,一个复数是该方程的根,则其共轭复数也是该方程的根。

为方程的根,则
也是方程的根。

这个定理据说有200种以上的证明方法,我们只需要了解这个定理,具体的证明步骤请读者自行查阅相关资料。

2.2因式定理(Factor theorem)

如果多项式f(a)=0,那么多项式

必定含有因式

我们不难对上述定理做出推广:

的一个因式

应该指明,因式定理是余式定理的一个推论 。

2.3小结

代数基本定理与因式定理告诉我们,n次多项式是一定可以在复数域内因式分解的,即:

其中

3.多项式的因式分解——试根法

3.1找出有有理根的多项式的根

上文提到,n次多项式是一定可以在复数域内因式分解。在这里,我们仅讨论方程有有理根的情形。对于这类多项式,我们采用试根法。

同样地,记

(其中

均为整数)

的一个有理根(即p、q互质,
),则
必为
的一个因子,
必为
的一个因子。通俗来说,根的分子是常数项的一个因子,根的分母为最高次项的一个因子。

3.2因式分解

例1.在实数域内因式分解

第一步:找出

嫌疑根

嫌疑根分子的因子有

嫌疑根分母的因子有

因此嫌疑根有

第二步:带入验证,找出

的一个根(如果你计算能力强都找出来我也没意见)

不难得到,

为一个根。

第三步:利用竖式法计算分解后的项(重要☆☆☆

这个步骤是最重要的一步,十分难写,但我依然尝试把它写出来。

I.写下原式子的系数,并像下图这样写好竖式

d37c489cbbfb1c4349009a0d4b431478.png

II.将最高次项的系数写下来,这里是1,故我们写下1

3f5b3a8e05bcf70bb19e5d1a45efaee4.png

III.用得到的②(②见图)去乘得到的根③

0bde90f55696ac61e2d6aa60f717cf6c.png

IV.用次高项的系数去加得到的③,从而得到④

0640301e99a0acab0a3e89bd6998c071.png

V.重复上述步骤(下面不再重复)

faf753e42b52d0ce822df8616497df32.png

97c62f6f7bc2ea4b76a570e712a04757.png

d74b6db0aeec0f6a30afe96efbb66080.png

0b6a5dd5ddd59222e6527977d53413a9.png

VI.得到⑧后,我们发现得到的结果是0,这说明,我们分解净了。

随后②④⑥分别是二次项系数、一次项系数与常数项。

那么因式可以分解为

当然,你也可以像刚才那样去分解

,但是这是二次的,我们可以直接动用十字交叉。

综上:我们得出答案:

3.3注意事项

①对于

的情况只需要提取出
便可以转化为上述的情形。

非整数的有理数的情形仅需通过有限的步骤即可转化为上述情形

③对于找出了无理根的,本竖式法仍然适用!

④对于找出了虚根的,由于虚根是成对出现的,我们可以把虚根所在的二次项式子写出来,然后运用接下来要说的多项式除法即可。如得到一个虚根为

,则必有虚根
,这样便可以分解出

下面举几个例子,留作同学们课后思考

3.4实战操练(留作课后习题)

例2.

例3.

4.多项式除法

4.1引例

例4.求不定积分

解:原式

(草,我这编的数字差点把自己送走)

有的同学可能会说:我要是看不出来怎么办?

有办法!凑它!

然后再积分即可,但是这两种方法都比较复杂,下面介绍多项式除法来解决这一个问题

4.2多项式除法的算法(Polynomial division)

多项式除法亦称为欧几里得除法,值得注意的是,我们这里讨论的是有理假分式

利用多项式除法把有理假分式变换为多项式与有理真分式之和的算法大致如下

例5.

写成多项式与有理真分式之和(自然可以采用例4.的方法,有兴趣的同学可以尝试)

I.像小学做除法一样列出竖式

ed1084ba672a411e3c8df0e3cee5114b.png

II.用被除数的最高次项 除以 除数的最高次项,得到②(注意:不是最高项系数!

8f71f4571afd3a99b4e96db88db7cb79.png

III.用得到的② 乘 除数,将得到的③写在下方

9a4e13b4d069bd01f0a502adb35b3579.png

IV.仿照代数竖式除法,用被除数 减去 得到的③,从而得到④

c9c0977ec25864b1c400cd1ffc717c49.png

V.之后仿照上述操作,直到我们得到⑩

a7c8307162d1642e996f008dc5bf0671.png

VI.得到⑩后,上面的式子之和(即②⑤⑧)即为作除法得到的多项式。⑩为作除法的“余数”,也就是我们得到的有理分数之和。

那么,

4.3多项式除法的本质

从本质上讲,多项式除法就是不断地拆项,凑项的过程。如果能真正理解这一点,那么也就基本上理解多项式除法了。

4.4注意事项

不要忘了写负号!

这都是笔者血的教训!

②对于有较低次项为0的情况,应该在列竖式时写0以示意

最好写成

③多项式除法在出现全是比 除数低次的项 的时候结束

如除数为

时,得到
的时候就应该结束了,有理假分式为

后续的分解应该使用待定系数法,设

,一通计算猛如虎,得到:

4.5实战操练(留作课后习题)

例6.

例7.

5.小结

从上面的讨论我们不难看到一个事实:多项式的因式分解是多项式除法余数为0的特例!

要想把多项式的因式分解和多项式除法学好,最好的方法就是多练。

多练习,多总结,相信各位一定可以掌握多项式除法!

74df36738428948d8e09fb5fbb2e59ae.png

6.致谢

本文的创作起因是有太多同学来问笔者关于不定积分有关的问题,而这些问题的关键也都离不开因式分解和多项式除法。另外,本文在创作过程中也得到了来自西安电子科技大学的王同学的帮助,在此一并感谢。

7.参考文献

1.《数学那玩意—自主招生秘籍》

2.《初中数学笔记》

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值