向量交点坐标公式_向量法求二面角的方法——高中立体几何压轴之一

这篇教案详细介绍了如何使用向量法求解二面角,包括建系、设点、求方向向量、法向量及计算夹角等步骤。特别强调了法向量的判断和二面角的取值情况。适合高中数学教学或自学参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

看到一份教案:

b1b33fc8b0c7d589df1ce9d5f254e400.png

写的还不错,需要有以下补充:

一、简单来说,两个半面所成的角即为二面角α,注意与面面角的区别。

二、向量法相对来说比较容易掌握,步骤如下:

1、建系。以三垂线的交点为原点,没有三垂线时需做辅助线;建立右手直角坐标系,让尽量多的点落在坐标轴上。

2、设点。有时需设线段长为a,写出所有相关的点,一般写四个,两面交线上的两个点M、N加俩面上各一个点A、B。

3、求方向向量。分别求出两面的方向向量AM、AN和BM、BN,带箭头。

4、求法向量m、n,分别设m=(x1,y1,z1),n=(x2,y2,z2);利用法向量与方向向量垂直,其数量积为0,可列出两个三元一次方程组;令x1=一个确切的数,比如1或0,求出另外两个坐标,同理可求出n向量(注意法向量需是非零向量)。

5、求出两法向量夹角β,在空间直角坐标系中观察法向量m和n得朝向,朝向面内还是面外。都朝内或都朝外时,α=π-β;一个朝内另外一个朝外时,α=β,如下图:

f03a89688f24912484fecba5641afe6f.png

欢迎讨论补充,谢谢。

在MATLAB中,计算两个平面之间的二面角通常涉及到向量运算和几何理解。二面角是空间几何中的一个概念,它描述了两个平面之间的夹角,这个角度在0到π之间。以下是基本步骤: 1. **确定平面的方向**:假设你有两个平面,每个平面都有三个非共线点定义其向量(normal vectors)。例如,A平面的向量是`n1 = [a1, b1, c1]`,B平面的向量是`n2 = [a2, b2, c2)`。 2. **计算向量**:取A平面上的一个点P和B平面上的一个点Q,它们构成的向量`v1 = Q - P`将是从A到B的向量。 3. **投影向量**:将`v1`投影到`n1`上得到向量`proj_v1`,然后再次投影到`n2`上得到向量`proj_v1_onto_n2`。这可以使用`proj = n1 * (v1 .* n2) / norm(n1)^2`来计算。 4. **计算角度**:二面角可以用这两个方向余弦(cosines)的反正切(arccos或acos)计算,即`angle = acos(dot(proj_v1_onto_n2, n2) / norm(proj_v1_onto_n2))`。注意结果范围需要调整到0到π,因为余弦值可能大于1。 ```matlab function angle_degrees = two_sided_angle(P1, Q1, ANormal, BNormal) % 计算向量 v1 = Q1 - P1; % 投影向量 proj_v1 = ANormal * (v1 .* BNormal) / norm(ANormal)^2; proj_v1_onto_n2 = proj_v1 ./ norm(proj_v1); % 计算并转换为度 angle_radians = acos(dot(proj_v1_onto_n2, BNormal)); angle_degrees = rad_to_deg(angle_radians); end % 辅助函数:弧度转角度 function deg = rad_to_deg(rad) deg = rad * 180 / pi; end % 示例使用 angle_degrees = two_sided_angle([0 0 0], [1 0 0], [1 0 0], [0 1 0]); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值