AI与临床试验:提升效率与降低成本

背景简介

随着医疗行业的快速发展,如何在确保安全性和效率的同时降低临床试验的成本成为了行业的重要议题。人工智能和机器学习技术的引入,为解决这一问题带来了新的可能。

AI在临床试验中的应用

地点选择与招募策略

人工智能可以帮助研究者绘制患者人群图,并识别出最有可能成功招募大量患者的地点。例如,通过分析数据,AI能够发现具有最大潜力的地点,从而加快招募过程,并减少招募不足的风险。

实时情景规划与决策支持

通过机器学习实现的实时情景规划,可以帮助研究人员选择最佳的试验地点、国家和遵循的协议。这不仅能够减少因资源不佳造成的浪费,还可以降低成本约20%,同时通过更准确的数据驱动决策,加快试验进程,改善患者结果。

数据自动化与患者分层

技术如深度神经网络、自然语言处理(NLP)和光学字符识别(OCR)已经被用来格式化结构化和非结构化数据,以便更快、更高效地进行安全审查。NLP和ML的组合在临床试验设计和运营中的决策中起到指导作用,使患者分层更优化。

患者招募与保留

多种人工智能技术可以在这个过程中提供帮助,例如,通过NLP对临床笔记进行初步筛选,以找到疾病处于正确阶段的患者。这将揭示可以进一步由研究工作人员筛选的患者,更快的招募时间线意味着更快的临床试验进展。

AI在临床试验操作中的角色

AI可以为临床试验操作的多个过程引入智能自动化,如监测药物依从性、创建数字孪生和合成手臂,以减少所需患者数量。不依从性不仅可能导致患者健康恶化,还可能增加成本。而AI可以帮助改善这一问题,例如,通过交互式医疗助手(IMA)确认患者是否正确服用药物。

AI在商业事务中的应用

监管提交与药物警戒

机器学习能够加速监管提交过程,例如,通过自动化一些高度手动的处理任务,翻译和数字化安全案例和不良药物反应(ADRs)的文件。此外,合成数据的使用可以加快AI和机器学习模型的训练,提高成本效率。

客户关系与内容创作

AI在商业生命科学中的应用还包括内容创作、受众定位和合规自动化。例如,使用AI工具生成个性化的促销材料,通过个性化的内容策略与患者互动。

总结与启发

AI技术在临床试验和生命科学商业领域的应用,不仅有助于提高效率、降低成本,还能够改善患者结果。随着技术的不断进步,AI有望在提升药物安全性、优化临床试验设计、加速治疗上市等方面发挥更大作用。然而,我们也要意识到隐私保护和数据安全的重要性,并在推动AI应用的同时确保这些关键问题得到妥善解决。

参考文献

  1. Arnold, D., & Wilson, T. (2017). 什么是医生?为什么AI和机器人技术将定义新的健康PwC.
  2. Iqbal, R., Amimer, D., Kiel, M., Wadhwa, P., Ha, A., & Lerner, I. (2022). 深度制药智能网络研讨会.
  3. AI药物发现平台。 (2021). CB Insights. ...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值