matlab复数向极坐标转换_MATLAB学习(4)——复数及其运算

本文详细介绍了MATLAB中复数的表示方法,包括实部虚部形式和复指数形式,以及如何通过直接构造法和符号函数构造法创建复数。此外,还讲解了复数矩阵的构造,并提供了直角坐标图和极坐标图的绘制示例。最后,提到了一些常用的复数操作函数。
摘要由CSDN通过智能技术生成

复数及其运算

A)复数的表示

(1).x=a+bi,其中a称为实部,b称为虚部

(2)或写成复指数的形式:x=re^(iθ)其中r称为复数的模,又记为 |x| ;θ称为复数的幅度,又记为Arg(x)

。且满足r=√(a^2+b^2)  ,tanθ=b/a

第一种方式适合处理复数的代数运算,第二种方式适合处理复数旋转等涉及幅角改变的问题

复数的构造:

(1)直接构造法

将复数看做完整的表达式输入

例:

x1=-1+i%实部虚部形式

x2=sqrt(2)*exp(i*(3*pi/4))%复指数形式

(2)符号函数构造法

将复数看做函数形式,将实部和虚部看做自变量,用syms来构造,用subs对符号函数中的自变量赋值

例:

syms a b real%声明a

b为实数型

x3=a+b*i%实部虚部形式复数的符号表达

subs(x3,{a,b},{-1,1})%代入具体值

syms r ct real;%声明r

ct为实数型

x4=r*exp(ct*i);%复指数形式复数的符号表达

subs(x4,{r,ct},{sqrt(2),3*pi/4})%代入具体值

以上例子中复数均为 -1+1i

复数矩阵的构造:

(1)由复数元素构造

例:

a1=[sqrt(2)*exp((pi/4)*i) 1+2i 1+3i;sqrt(2)*e

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值