系列简介:这个系列文章讲解线性代数的基础内容,注重学习方法的培养。线性代数课程的一个重要特点(也是难点)是概念众多,而且各概念间有着千丝万缕的联系,对于初学者不易理解的问题我们会不惜笔墨加以解释。在内容上,以国内的经典教材“同济版线性代数”为蓝本,并适当选取了一些补充材料以开阔读者的视野。本系列文章适合作为初学线性代数时的课堂同步辅导,也可作为考研复习的参考资料。文章中的例题大多为扎实基础的常规题目和帮助加深理解的概念辨析题,并有相当数量的历年考研试题。对于一些难度较大或对理解所学知识有帮助的“经典好题”,我们会详细讲解。阅读更多“线性代数入门”系列文章,欢迎关注数学若只如初见!
前面两节我们介绍了关于抽象矩阵的一些常见题型,抽象行列式的计算也是考研数学中的经常涉及的问题,而且与抽象矩阵的联系密切,本节我们来介绍计算抽象行列式的一些基本方法和典型例题。(由于公式较多,故正文采用图片形式给出。)
一、概述。上述性质的相关基础知识介绍可参考以下文章:
线性代数入门——方阵的行列式及其基本运算性质
线性代数入门——伴随矩阵的定义及其基本性质
线性代数入门——逆矩阵常见运算律的推导和总结
二、由矩阵满足的关系式计算行列式。(将条件化成“乘积”形式,再利用行列式的“可乘性”,是解答此类题目的常见方法。)
三、与向量相关的问题(本题以向量的形式考查行列式的基本性质)。
关于行列式基本性质的介绍见下文:
线性代数入门——行列式的基本性质总结及一些须要注意的问题
四、利用矩阵的变形求行列式。(本题的“背景知识”是正交矩阵,我们将在“相似矩阵”一章中对其作进一步介绍。)
五、利用“左右乘”的技巧求行列式。(再次强调,行列式一般不具有“可加性”!)
上一篇:线性代数入门——关于抽象矩阵运算的典型例题