测试的常用规则
一个测试单元必须关注一个很小的功能函数,证明它是正确的;
每个测试单元必须是完全独立的,必须能单独运行。这样意味着每一个测试方法必须重新加载数据,执行完毕后做一些清理工作。通常通过setUp()和setDown()方法处理;
编写执行快速的测试代码。在某些情况下,测试需要加载复杂的数据结构,而且每次执行的时候都要重新加载,这个时候测试执行会很慢。因此,在这种情况下,可以将这种测试放置一个后台的任务中。
采用测试工具并且学着怎么使用它。
在编写代码前执行完整的测试,而且在编写代码后再重新执行一次。这样能保证你后来编写的代码不会破坏任何事情;
在提交代码前执行完整的测试;
如果在开发期间被打断了工作,写一个打断的单元测试,关于你下一步将要开发的。当你回来工作时,你能知道上一步开发到的指针;
单元测试函数使用长的而且具有描述性的名字。在正式执行代码中,可能使用square()或sqr()取名,但是在测试函数中,你必须取像test_square_of_number_2()、test_square_negativer_number()这些名字,这些名字描述更加清楚;
测试代码必须具有可读性;
单元测试对新进的开发人员来说是工作指南。
单元测试的目的是对一个模块、一个函数或者一个类来进行正确性检验,如果单元测试通过,说明我们测试的对象能够正常工作。如果单元测试不通过,要么测试对象有 bug,要么测试条件输入不正确。下面小编为大家介绍 Python 的几种测试框架。
1. unittest
unittest 和 JUnit类似,可以说是python的标准单元测试框架,所以有时也被人称为 PyUnit。它使用起来和xUnit 家族其他成员类似。 用的人也比较多。兼容 python2 以及python3 。
个人比较喜欢用这个,主要之前用过JUnit,用这个上手就很快。而且属于python自动集成,不用额外的安装包,感觉是该有的都有了,用着方便。
示例:
import unittest
class TestStringMethods(unittest.TestCase):
def test_upper(self):
self.assertEqual('foo'.upper(), 'FOO')
def test_isupper(self):
self.assertTrue('FOO'.isupper())
self.assertFalse('Foo'.isupper())
def test_split(self):
s = 'hello world'
self.assertEqual(s.split(), ['hello', 'world'])
# check that s.split fails when the separator is not a string
with self.assertRaises(TypeError):
s.split(2)
if __name__ == '__main__':
unittest.main()
2. unittest2
unittest2 可以说是一个针对 unittest 测试框架新特性的补丁。它很大程度上和 unittest 都类似。然后还添加了一些 unittest 没有的方法。
3. pytest
参考文档:http://pytest.org/latest/
看了一下,pytest文档还是蛮详细的。比较关注的一点是,pytest 直接可以通过 @pytest.mark.parametrize 进行参数化,而unittest 则需要借助DDT。
示例:
def inc(x):
return x + 1
def test_answer():
assert inc(3) == 5
执行如下:
$ pytest
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:
collected 1 item
test_sample.py F
======= FAILURES ========
_______ test_answer ________
def test_answer():
> assert inc(3) == 5
E assert 4 == 5
E + where 4 = inc(3)
test_sample.py:5: AssertionError
======= 1 failed in 0.12 seconds ========
4. nose
nose 扩展了 unittest,从而使得测试更容易。
一般可以用 unittest 方式写用例,写完之后用 nose 来执行。nose 的测试收集方式还是很方便的。
还有一个特定就是,nose 可以采用 @with_setup() 来定义方法的 setup 和 teardown。
示例:
def setup_func():
"set up test fixtures"
def teardown_func():
"tear down test fixtures"
@with_setup(setup_func, teardown_func)
def test():
"test ..."
5. doctest
doctest 模块会搜索那些看起来像交互式会话的 Python 代码片段,然后尝试执行并验证结果。
doctest 中,如果要写测试用例,只需要在写在以 ''' '''包围的文档注释即可,也就是可以被__doc__这个属性引用到的地方。这点比较特别,跟其他单元测试框架都不一样。但是我觉得这样的话就注定了doctest不适合大型测试,因为做不到代码和测试的分离。
import doctest
"""
This is the "example" module.
The example module supplies one function, factorial(). For example,
>>> factorial(5)
120
"""
def factorial(n):
"""Return the factorial of n, an exact integer >= 0.
>>> [factorial(n) for n in range(6)]
[1, 1, 2, 6, 24, 120]
>>> factorial(30)
265252859812191058636308480000000
>>> factorial(-1)
Traceback (most recent call last):
...
ValueError: n must be >= 0
Factorials of floats are OK, but the float must be an exact integer:
>>> factorial(30.1)
Traceback (most recent call last):
...
ValueError: n must be exact integer
>>> factorial(30.0)
265252859812191058636308480000000
It must also not be ridiculously large:
>>> factorial(1e100)
Traceback (most recent call last):
...
OverflowError: n too large
"""
import math
if not n >= 0:
raise ValueError("n must be >= 0")
if math.floor(n) != n:
raise ValueError("n must be exact integer")
if n+1 == n: # catch a value like 1e300
raise OverflowError("n too large")
result = 1
factor = 2
while factor <= n:
result *= factor
factor += 1
return result
if __name__ == "__main__":
doctest.testmod(verbose=True)
verbose 参数用于控制是否输出详细信息,默认为 False ,如果不写,那么运行时不会输出任何东西,除非测试 fail。
输出如下:Trying:
[factorial(n) for n in range(6)]
Expecting:
[1, 1, 2, 6, 24, 120]
ok
Trying:
factorial(30)
Expecting:
265252859812191058636308480000000
ok
Trying:
factorial(-1)
Expecting:
Traceback (most recent call last):
...
ValueError: n must be >= 0
ok
Trying:
factorial(30.1)
Expecting:
Traceback (most recent call last):
...
ValueError: n must be exact integer
ok
Trying:
factorial(30.0)
Expecting:
265252859812191058636308480000000
ok
Trying:
factorial(1e100)
Expecting:
Traceback (most recent call last):
...
OverflowError: n too large
ok
1 items had no tests:
__main__
1 items passed all tests:
6 tests in __main__.factorial
6 tests in 2 items.
6 passed and 0 failed.
Test passed.