- 博客(1288)
- 收藏
- 关注
原创 RAG 实战:零基础也能构建本地 PDF 聊天机器人
LangChain 是由 Harrison Chase 于 2022 年发起的开源项目。我们之所以使用这个框架,是因为它简化了基于语言模型的应用开发过程。我们使用 Python 作为编程语言,并使用 Anaconda 作为 Python 发行版,便于管理环境和依赖包。整个技术栈包括:Python(搭配 Anaconda)、LangChain、Ollama(配合 Mistral 模型)、FAISS 作为向量数据库,以及 Streamlit 用于构建用户界面。
2025-05-05 15:12:21
322
原创 这书太绝了!几乎把大模型讲得透透的!
👍行业大咖力荐:本书获得多位 AI 领域大咖的推荐,包括新浪微博首席科学家&AI 研发部负责人张俊林,NLP 知名博客“科学空间”博主苏剑林,GitHub 高级工程师 Benjamin Muskalla,Netflix 资深科学家 Cameron Wolfe,《设计机器学习系统》与 AI Engineering 作者 Chip Huyen,FM Global 高级数据科学家 Vahid Mirjalili 博士等。🔹 让 LLM更聪明:微调、加载预训练权重,让你的 LLM 适应不同任务!
2025-05-03 10:15:00
192
原创 AI大模型·白皮书 | 大模型典型示范应用案例集(219页) 99 个绝彩案例,带你解读DeepSeek大模型如何重塑百行千业!
大模型典型示范应用案例集》由中国多家企业和研究机构共同编写,集中展示了2024年大模型在各个领域的应用案例。这些案例涵盖了智能应用、生态服务和行业赋能等多个方面,展示了大模型技术在推动科技创新、产业升级和经济社会发展中的重要作用。《案例集》围绕行业赋能、智能应用、生态服务三大板块,案例覆盖工业、金融、医疗、教育、文创等各行业,全面展现大模型在各个产业垂直场景的应用实践。
2025-05-01 11:00:00
208
原创 Data Agent:Data + AI最典型的应用场景
在大模型领域,Agent是一种基于大模型技术,能自主感知环境信息、运用自身智能进行分析决策,并采取行动以达成特定目标的智能实体,具有自主性、智能性和交互性等特点,可应用于智能客服、机器人控制、数据分析决策等多个场景。2024年,Google团队发布了第一版Agents白皮书。白皮书中对Agent的定义是,
2025-04-28 16:17:49
963
原创 RAG 实战|用 StarRocks + DeepSeek 构建智能问答与企业知识库
语义搜索匹配用户问题与知识库中的相关内容,使回答基于真实信息,从而降低大模型的“幻觉”风险,提升回答的自然性和可靠性。: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。在本地部署 DeepSeek 时,Ollama 主要起到模型管理和提供推理接口的作用,支持运行多个不同的 LLM,并允许用户在本地切换和管理不同的模型。用于记录用户问题、检索结果和生成回答,保存上下文,方便进行长对话,至于长对话,用户可自行探索。
2025-04-28 16:16:15
695
原创 目前我见过的最好的两本LLM大模型入门书!一本国内人大发表!一本国外出版两个月GitHub星标已狂飙到37.6K!
第一章是带你通透的理解大语言模型,像大语言模型背后的基本概念、类似chatgpt类的大模型的transformer结构,然后开始规划如何从零构建大语言模型。这本书的目的在于从理论和代码层面动手带你从零一步步构建属于自己的大语言模型,整本书的每个阶段都充斥着清晰的文本、图表和示例解释,涵盖了从初始设计和创建到在通用语料库上的预训练,再到针对特定任务的微调。这本书主要就是为初学者设计的,可以给你提供非常完善的大模型技术路线框架,帮你系统正确的进入到大模型领域。撰写的从零开始构建大模型的入门书。
2025-04-25 16:20:58
419
原创 Spring AI 支持 Mcp协议了,通过Mcp集成本地文件管理
Model Context Protocol 是Anthropic 于2024年11月重磅开源的「模型上下文协议」MCP。其是一种开放的通信协议,是人工智能领域的 “USB 接口”,在大模型和其他数据源(数据、工具、开发环境等)之间建立了双向、并且更加安全的连接。Mcp 将LLM的数据孤岛被彻底打破,LLM应用和外部数据源、工具都将无缝集成。目标是实现LLM应用程序与外部数据源和工具之间的无缝集成。
2025-04-21 15:34:09
1155
原创 2025《大模型应用落地白皮书》企业转型行动指南|附74页PDF文件下载
它不仅为企业提供了全面且深入的大模型应用实践分析,涵盖了各行业的成功案例和技术实施路径,帮助企业汲取经验、规避风险;当前,众多企业正积极加大在大模型领域的投资,试图借助这一突破性技术,在激烈的市场竞争中占据有利地位。在 AI 技术浪潮中,企业转型的关键机遇已然显现。《火山引擎 | IDC 大模型应用落地白皮书企业转型行动指南》这份重磅白皮书,为企业在 2025 年的大模型应用落地提供了清晰的方向指引。它不仅是企业拥抱大模型技术变革的重要行动指南,更是企业在 AI 时代实现可持续发展的关键助力。
2025-04-16 15:32:29
305
原创 图解 LangChain 多模态应用,刷完教程只为你轻松处理图文数据
LangChain 就像是个多媒体翻译官,能帮你把各种图片、文字完美融合起来处理。
2025-04-14 16:36:25
970
原创 【万字长文】实现检索增强生成RAG的应用开发,你至少有11个主流框架可供选择,怎么选?
在大语言模型(LLM)领域,检索增强生成(RAG)技术通过结合信息检索和生成模型的优势,显著提升了模型在知识密集型任务中的表现。RAG框架是一种强大的工具,它允许开发人员构建能够从外部来源检索相关信息并据此生成更优响应的AI模型。RAG框架的工作原理可以概括为三个主要步骤:检索、增强和生成。RAG技术通过结合检索和生成技术,弥补了生成模型在处理知识密集型任务时的不足。传统的生成模型在面对复杂问题时,常常因缺乏足够的知识而生成出错误或无关的回答。
2025-04-11 14:58:35
1009
原创 AI编程助手Trae助力,10分钟搞定Dify中英文翻译工作流!
今天,我主要带大家借助 AI 编程辅助工具 Trae,在一行代码都不写的情况下,成功实现了 Dify 工作流 “中英文翻译工作流.yml” 的制作。以往,完成这样一个工作流,从制作到编写提示词再到测试,大约需要一个小时;而现在,在 AI 的辅助下,整个过程不到 10 分钟就完成了,其中大部分时间还花在了测试和验证上。这真真切切地实现了 AI 自动化,让我们深刻感受到了 AI 的神奇魅力。可能有的小伙伴会质疑,这个工作流看起来非常简单,没有太多代码交互的部分。
2025-04-10 16:32:46
722
原创 中国人大终于出书了!这本大模型综述真是绝了(附PDF)
LLMBox 是一个全面的代码工具库,专门用于开发和实现大语言模型,其基于统一化的训练流程和全面的模型评估框架。LLMBox 旨在成为训练和利用大语言模型的一站式解决方案,其内部集成了大量实用的功能,实现了训练和利用阶段高度的灵活性和效率。\3. 在 2023 年 12 月底,为更好地提供大模型技术的中文参考资料,团队启动了中文书的编写工作,并且于 2024 年 4 月 15 日左右完成初稿。希望通过阅读本书,大家能够深入了解大模型技术的现状和未来趋势,为自己的研究和实践提供指导和启发。
2025-04-07 14:48:01
492
原创 【大模型实战】使用LangChain、Qdrant和LLaMA 3构建医疗聊天机器人
大家好,今天分享一个开源的agi项目,主要使用LangChain、Qdrant和Meta的LLaMA 3构建了一个医疗聊天机器人。具体的步骤如下:✅ 提取 PDF✅ 分块并嵌入它们✅ 将它们存储在矢量数据库 (Qdrant)✅ 根据用户查询检索相关信息✅ 使用 Meta 的模型回答所有这些都由和提供支持。🧱 技术栈LangChain— 用于链接 LLM 工具和管理提示— 用于 LLaMA 3 和嵌入Qdrant— 高性能向量存储— 加载 PDF 文档。
2025-04-07 14:46:28
964
原创 手把手教你打造AI医疗大模型的微调实战指南
大型语言模型(LLMs)在医疗健康领域潜力巨大,但通用模型缺乏医疗专业知识,难以达到临床应用的严谨标准。本文将简明介绍如何通过微调技术,构建具备专业医生回复特征的大模型,为医疗机构和健康平台提供精准的智能问诊服务。一、为什么需要医生风格的大模型微调?❌ 专业术语理解不足:对医学术语、药物名称、疾病分类等专业知识掌握不全面❌ 回复风格不匹配:缺乏医生特有的专业、严谨且富有同理心的表达方式❌ 循证医学依据不足:回答可能缺乏最新临床指南和研究支持。
2025-03-31 21:19:16
935
原创 一种在本地部署Qwen通义千问大模型的超简单方法-兼容OpenAi接口
有很多开源大模型都可以本地部署,用于替代 chatGPT 实现本地执行各种任务,比如国内较好的全尺寸模型。在一般的翻译、文案创作、辅助编码等任务上,基本达到了ChatGPT3.5的水平。
2025-03-31 21:15:41
1001
原创 太绝了!字节内疯传的380页《从零开始大模型开发与微调基于PyTorch与ChatGLM》大模型必备书籍!
大模型是深度学习自然语言处理皇冠上的一颗明珠,也是当前AI和NLP研究与产业中最重要的方向之一。本书使用PyTorch 2.0作为学习大模型的基本框架,以ChatGLM为例详细讲解大模型的基本理论、算法、程序实现、应用实战以及微调技术,为读者揭示大模型开发技术。## 目录。
2025-03-28 11:41:46
1142
原创 DeepSeek+ragflow构建企业知识库之工作流,突然觉的dify又香了
我们按照下图的数据介绍组件。• ragflow的的官方文档相对来说还是比较欠缺的,特别是用户交互这块。• ragflow的ui使用成本相对比较高,组件不知道返回什么,只能根据示例或意图推断• 使用ragflow建议是有技术底子的• 英文文档的描述习惯和中文还是有很大的差别的说实话,用着有点崩溃,哈哈。
2025-03-28 11:40:51
1338
原创 DeepSeek(私有化)+IDEA+Dify+微信 搭建AI助手保姆级教程
1.点击Dify 平台首页左侧的"创建空白应用",选择"聊天助手"类型应用并进行简单的命名。1.选择 Ollama 框架内的。
2025-03-28 11:38:38
908
原创 我花了5分钟,成功部署阿里QwQ-32B,秒出的感觉太爽了
真的特别需要,尤其是对于我这种每天对接各种群各种需求消息回不完的人——仔细看一下这份**「群聊精华总结」,从今天早上 7 点半到 11 点半 family 群里一共有 111 条消息,讨论的热门话题**No.1 是「Qwen-32B 模型性能与推理特点」,No.2 是「Manus 模型评测和技术分析」。Manus 昨天平地一声雷炸的圈子里的好多人都头脑发热了,官方和一些带节奏的人估计都度过了难忘的一天。今天圈子终于开始有点回归理性了。其实昨天我们的文章里《
2025-03-26 15:54:02
940
原创 Word接入DeepSeek r1,轻松实现智能文本生成与润色
之前我曾利用Word的VBA宏接入ChatGPT 3.5的API。然而,由于OpenAI对中国大陆地区的限制,这一方案难以持续使用。随后出现的大型语言模型要么难以调用,要么收费昂贵。如今,随着DeepSeek的开源,结合Word这一办公常用场景,我决定将DeepSeek模型接入Word,实现文本生成和文本润色两大功能。通过VBA调用英伟达的API(具体获取方式之前已提到多次不再赘述),采用非流式生成方式。用户只需选中文字并点击模块名称,稍等片刻即可生成结果。该模块基于推理文本模型,并保留了模型的思考过程。
2025-03-26 15:45:50
1075
原创 RAG中的5种文档切分策略:动态图示清晰解析
每种分块技术都有其自身的优点和权衡。在许多情况下,我发现语义分块的效果相当不错,但仍然需要实际测试。选择哪种策略取决于数据的特性、嵌入模型的能力、计算资源等因素。
2025-03-26 15:43:49
1305
原创 AI大模型神书安利:《多模态大模型:技术原理和实战》(免费附送PDF电子版)|大模型技术|LLM|多模态大模型|大模型实战
内容概述:引入多模态大模型的概念,探讨其技术挑战与解决方案。关键要点:多模态数据的表示、融合与对齐技术。内容概述:总结全书内容,提出对未来研究的建议与展望。这本大模型书籍PDF电子版我会免费分享出来,需要的小伙伴可以扫取。
2025-03-24 13:48:10
885
原创 手把手教你完成句子分类,最好上手的BERT初级使用指南
过去几年里,机器学习语言处理模型的发展十分迅速,已经不再局限于实验阶段,而是可以应用于某些先进的电子产品中。举个例子,最近谷歌官宣,称BERT模型已经成为其搜索产品背后的主要动力。谷歌认为,这一进展(即自然语言理解应用于搜索领域)是过去五年中机器学习领域的最大进步,也是搜索史上的最大进展之一。Jay Alammar小哥最近又发了一篇新文,简要介绍了如何使用BERT模型来完成句子分类任务,作为基础性入门教程,深入地展示了相关的核心概念。
2025-03-24 13:46:27
1045
原创 10 分钟,使用 Langchain实现一个AI法律助手
是一个用于构建基于大语言模型 (LLM) 应用程序的开发框架,它提供了一系列功能模块,帮助开发者快速构建和部署复杂的自然语言处理应用。
2025-03-24 11:30:44
676
原创 RagFlow与DeepSeek R1本地知识库从0到1搭建指南
在某些情景下创建本地知识库有一些需求,现在以Deepseek R1与 RAGFlow搭档,组建一个本地企业级知识库。关于本地知识库和微调有一些区别,本地知识库操作起来更简单,但不如微调的效果好,成本比微调便宜。RAGFLow是一个可以构建知识库的应用,整体的流程是在docker中部署RAGFlow展开,配置嵌入模型,填加大语言模型,本地的ollama或者调用api,创建知识,再到具体应用。💡:Docker安装是基础步骤,如已安装可直接跳至第二部分。
2025-03-22 12:00:52
1500
原创 2024年中国AI大模型场景探索及产业应用调研报告|附47页PDF文件下载
四、未来发展趋势 报告预测了AI大模型技术的七大发展趋势,包括技术层面的预测和决策大模型的发展,竞争格局的变化,应用场景的多元化,以及金融、电商、教育和医疗等行业的深入应用。五、发展建议 报告提出了针对AI大模型行业的发展建议,包括加强安全监管、推动商业化应用、构建开源生态和加速人才培养等方面,旨在为行业创新和发展提供指导。是一份深入剖析中国人工智能大模型领域发展的综合性报告。综上所述,这份报告不仅为我们提供了中国AI大模型行业的最新动态和深入分析,也为未来的发展方向和政策制定提供了宝贵的参考。
2025-03-22 11:57:01
272
原创 使用 DeepSeek 和 Ollama 搭建一个本地知识库系统(文末包含完整代码)
用这个系统,你可以轻松地从 PDF 里提取信息,像跟人聊天一样问问题。赶紧试试吧,释放 AI 的潜力!完整版代码放在下方二维码↓↓↓。
2025-03-21 11:36:44
1451
原创 新手福音!Deepseek+ollama 超级简单的本地部署种草方案
目前本地部署的 Deepseek R1 的 1.5B 等小参数模型基本是将推理能力提炼到 Qwen 或 Llama 的蒸馏版本,性能是远远比不上官网的版本的,你可以根据你自身的情况判断是否需要本地部署。
2025-03-21 11:15:14
1077
原创 《Manus没有秘密——70页PPT解读AI Agent》深度解析:当智能革命照进现实,附PDF免费下载!
真正推动进步的,不是已知领域的重复建设,而是对未知疆域的勇敢探索。——明浩在复盘AI Agent进化史时,如是说。保证100%免费👉 福利来袭👈当撰写《DeepSeek启示录》时,对Agent的认知仍停留在"空中楼阁"的想象中。直到Manus的出现,这场技术革命终于撕开了神秘的面纱。正如我在播客首章所言:“昨天的空泛,恰是今天的清醒。“2025年不是AI Agent元年,而是AI Agent的觉醒之年。
2025-03-21 11:12:44
936
原创 AI里的RAG到底是什么?如何低成本搭建企业AI智能体
AI大模型如deepseek本地部署的成本相对较低,如果要训练,微调大模型,则需要非常多的显卡,与很多时间,那一般企业无法投入那么多钱去买显卡,怎么办?通过RAG与本地部署来提升大模型的专业知识RAG(Retrieval-Augmented Generation,检索增强生成)是一种将与结合的AI技术范式,通过动态引入外部知识提升大模型输出的准确性和时效性。工作流程mermaid语义检索:将用户Query和知识库文档编码为向量,计算相似度(如余弦相似度)知识重排序。
2025-03-20 14:28:59
626
原创 文科生的我用 DeepSeek+AI 程序员半小时开发了一个小程序
有时候我突发奇想要做个小工具,但是碍于不会编程,没办法进行下去。但是学习编程要花很长时间,而且以我的水平,还不一定学得懂。我就在想,能不能通过 AI 生成一个网页、小程序或者 App 呢?经过实战手搓,发现真的可以!正好我看见了通义灵码的“AI 程序员”有了 DeepSeek 推理模型的加持,通义灵码在代码等方面就更强了!它自带两种模式,一个是智能问答模式,一个是“AI 程序员”模式,智能问答模式适合有一定编程基础的人员,“AI 程序员”模式适合什么都不会的小白。今天我就给大家演示一下,一个。
2025-03-20 14:26:26
1204
原创 RAG技术:20种方法源码解读与实践
检索增强生成(RAG)是一种结合信息检索与生成模型的混合方法。它通过引入外部知识来提升语言模型的性能,从而提高回答的准确性和事实正确性。与传统的固定长度分块方法不同,语义分块会根据句子之间的语义相似性来确定分块的边界。这种方法通过计算句子嵌入向量的相似度来确定分块。当句子之间的语义相似度低于某个阈值时,就会将文本划分为不同的块。例如,可以使用滑动窗口技术计算句子之间的语义相关性。CCH通过在每个分块的前面添加高级别的上下文信息(例如文档标题或章节标题),然后再对分块进行嵌入处理。
2025-03-20 14:20:42
886
原创 本地部署DeepSeek+DiFy平台构建智能体应用
*RAG(Retrieval-Augmented Generation)检索增强生成是一种将外部知识检索与大语言模型生成能力结合的混合架构。**其核心思想是通过检索外部知识库(如文档、数据库、网页等),弥补大模型静态训练数据的局限性;在生成答案时直接依赖检索到的证据,减少模型凭空编造内容的可能性,降低幻觉风险。RAG无需重新训练模型,仅需更新知识库即可适配不同专业领域(如医疗、法律)。类似将大模型视为一个“推理专家”,而RAG系统为其配备了一个“实时资料库助手”。
2025-03-18 16:22:15
997
原创 将自然语言转换为 SQL:在 5 个步骤中使用 crewai 构建强大的查询工具
在当今数据驱动的世界中,无需编写复杂 SQL 即可查询数据库的能力变得越来越有价值。想象一下,用简单的英语向数据库提问,然后获得格式化的结果。这正是我们将在本文中探讨的内容:使用 CrewAI 构建一个自然语言到 SQL 查询工具。CrewAI 是一个用于编排角色扮演自主 AI 代理的框架。它允许您创建一个由专业 AI 代理组成的团队,这些代理可以协同工作以完成复杂的任务。在我们的案例中,我们将创建一个代理团队,该团队可以将自然语言查询转换为 SQL,针对数据库执行它们,并以人类可读的格式返回结果。我们的应
2025-03-18 16:14:18
901
原创 大模型私人定制:5分钟教你不写一行代码微调构建属于你的大模型(使用llama-factory微调Qwen大模型)
训练时为保证大模型的通用能力会使用多类别数据,例如:数学类别,代码类别数据等等来训练。训练后的大模型是一个“博学家”,具备回答所有类别基础问题的能力,但是在面对更深度的专业领域问题时,大模型的表现往往一般。为了让大模型在某个专业领域具备突出能力,需要使用专业领域的数据集,对大模型进行进一步的参数微调(继续训练),提升它在专业领域方面的表现。大模型微调分为全参微调和高效微调,全参微调就是将大模型所有层的参数进行微调,优点是可以充分利用已有大模型的特征,缺点是调整全部参数需要消耗大量的计算资源。
2025-03-17 15:30:34
1109
原创 DeepSeek+dify 本地知识库:高级应用Agent+工作流
工作流通过将复杂的任务分解成较小的步骤(节点)降低系统复杂度,减少了对提示词技术和模型推理能力的依赖,提高了 LLM 应用面向复杂任务的性能,提升了系统的可解释性、稳定性和容错性。一个完整的工作流,必须具备。
2025-03-17 15:27:50
3865
原创 Hugging Face核心团队亲自解密Transformer!建议想学习Transformer的每个人至少读一遍!
通过这些内容,读者不仅能够掌握 Transformer 模型的使用,还能理解如何在实际项目中有效地应用这些技术。总的来说,这本书是一本非常实用的资源,适合那些希望深入了解和应用 Transformer 模型的开发者和研究人员。此外,书中还提供了丰富的代码示例和实战案例,帮助读者理解和应用所学知识。此外,书中还提供了丰富的代码示例和实战案例,帮助读者理解和应用所学知识。通过本书,您将学习如何有效地应用这些技术,以提升您的NLP项目性能。除了技术细节,这本书还讨论了 NLP 中的一些挑战和最佳实践,如。
2025-03-12 11:05:47
883
原创 大神Karpathy亲授!最新LLM入门视频课!
最后,Karpathy 再次总结了整个视频的核心内容,回顾了 LLM 的训练流程 (预训练、SFT、RL),强调了 LLM 的本质是 token 序列生成器,以及其能力的局限性和“瑞士奶酪”特性。强调要将 LLMs 作为工具使用,谨慎对待其输出,并保持批判性思维。同时,也展望了 LLM 技术的未来发展,以及 RL 在推动 LLM 发展中的重要作用。
2025-03-12 11:03:21
728
原创 超三成AI岗位年薪超50万,这个行业开始抢人
一种神秘力量吸引着“顶级天才”的选择技术理想主义、组织文化、团队实力、资金等都是有关因素在DeepSeek掀起的国内AI热潮下,今年的春招刚启动,最具话题度的行业已经出现了。据智联招聘日前发布的《2025年春招市场行业周报(第一期)》,春招首周,人工智能行业求职人数同比增速达33.4%,位居行业第一;人工智能工程师的求职增速达69.6%,位居职业榜首,平均招聘月薪超过2万元。周盛是一名计算机专业的硕士生,即将在今年毕业。
2025-03-11 11:37:05
1038
原创 医疗大模型:数据+知识双轮驱动实现医学推理、医患问答、病历自动生成、临床决策,为未来医疗服务提供全新可能性
目前大多数开源的ChatLLM项目使用的是其他模型(如:ChatGPT)生成的指令数据,其不可避免的存在数据幻想的问题,数据幻想问题将严重影响LLM在实际场景中的应用和拓展。
2025-03-11 11:32:32
1072
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人