自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1254)
  • 收藏
  • 关注

原创 Hugging Face核心团队亲自解密Transformer!建议想学习Transformer的每个人至少读一遍!

通过这些内容,读者不仅能够掌握 Transformer 模型的使用,还能理解如何在实际项目中有效地应用这些技术。总的来说,这本书是一本非常实用的资源,适合那些希望深入了解和应用 Transformer 模型的开发者和研究人员。此外,书中还提供了丰富的代码示例和实战案例,帮助读者理解和应用所学知识。此外,书中还提供了丰富的代码示例和实战案例,帮助读者理解和应用所学知识。通过本书,您将学习如何有效地应用这些技术,以提升您的NLP项目性能。除了技术细节,这本书还讨论了 NLP 中的一些挑战和最佳实践,如。

2025-03-12 11:05:47 853

原创 大神Karpathy亲授!最新LLM入门视频课!

最后,Karpathy 再次总结了整个视频的核心内容,回顾了 LLM 的训练流程 (预训练、SFT、RL),强调了 LLM 的本质是 token 序列生成器,以及其能力的局限性和“瑞士奶酪”特性。强调要将 LLMs 作为工具使用,谨慎对待其输出,并保持批判性思维。同时,也展望了 LLM 技术的未来发展,以及 RL 在推动 LLM 发展中的重要作用。

2025-03-12 11:03:21 698

原创 超三成AI岗位年薪超50万,这个行业开始抢人

一种神秘力量吸引着“顶级天才”的选择技术理想主义、组织文化、团队实力、资金等都是有关因素在DeepSeek掀起的国内AI热潮下,今年的春招刚启动,最具话题度的行业已经出现了。据智联招聘日前发布的《2025年春招市场行业周报(第一期)》,春招首周,人工智能行业求职人数同比增速达33.4%,位居行业第一;人工智能工程师的求职增速达69.6%,位居职业榜首,平均招聘月薪超过2万元。周盛是一名计算机专业的硕士生,即将在今年毕业。

2025-03-11 11:37:05 966

原创 医疗大模型:数据+知识双轮驱动实现医学推理、医患问答、病历自动生成、临床决策,为未来医疗服务提供全新可能性

目前大多数开源的ChatLLM项目使用的是其他模型(如:ChatGPT)生成的指令数据,其不可避免的存在数据幻想的问题,数据幻想问题将严重影响LLM在实际场景中的应用和拓展。

2025-03-11 11:32:32 872

原创 2024年小结:从大模型算法工程师面试官的角度,聊聊今年就业情况

文章的原因。然而。

2025-03-10 11:32:03 886

原创 大模型中的提示词(prompt)压缩:让每个Token都物尽其用

提示词压缩(

2025-03-10 11:28:09 809

原创 大模型(LLM)工程师实战之路(含学习路线图、书籍、课程等免费资料推荐)大模型零基础到精通,看这篇就够了,赶紧收藏!!

新春佳节,蛇年大吉!愿您在新的一年里,生活如蛇行般灵动自如,事业似蛇舞般活力四射。蛇年,愿您福运缠身,财源广进,家庭和睦,幸福安康!

2025-03-10 11:26:12 920

原创 一分钟教会你将DeepSeek接入到微信(附DeepSeek使用教程)

可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。的爆火,远不止于此。

2025-03-08 11:45:29 1036

原创 2025最新最全大模型学习路线 | 自学大模型还来得及吗❓从零基础到精通,只看这一篇,速速收藏!!!

大模型学习路线保证100%免费👉 福利来袭👈✅第一阶段:理解大模型第二阶段:大模型提示工程✅✅6. LangChain开发实践2. Agents智能体架构7. 实战项目七:基于图片的智能信息检索问答8. 实战项目八:无人数字人直播机器人客服9. 实战项目九:基于Agents打造AI模拟面试机器人✅11. 开源模型与私有化模型12. 模型微调Fine-Tuning3. 实战:医疗领域智能医生私有模型13. 开源大模型微调14. 多模态6. 实战。

2025-03-08 11:42:29 916

原创 Agent四大范式 | 综述:全面理解Agent工作原理,零基础到精通,看这边就够了,赶紧收藏!!!

Autonomous agents 又被称为智能体Agent。能够通过感知周围环境、进行规划以及执行动作来完成既定任务。在这些能力中,规划尤为重要,它涉及到复杂的理解、推理和决策制定。大语言模型出现以前,我们一般通过规则的方法,或者强化学习的方法来实现。规则的方法是指把复杂的自然语言问题转化为规则符号,往往需要行业专家的介入,缺乏容错能力,小错误可能导致整个系统的失败。而强化学习一般是构建策略网络或奖励模型,但是一般需要大量样本进行训练,但是收集数据往往成本很高,所以这种方法可行性不大,很难推广开来。

2025-03-07 17:51:37 1474

原创 火爆中文圈的Manus 智能体到底是什么,它还能火多久?

我早上看到 manus 的消息,立刻去官网申请,目前还没拿到。全网媒体报道刷到很多,但少有AI 从业人士的专业评价。最早的媒体稿曾声称,manus 得到大量海外关注。实际在 X 上,manus 的传播声量并不大。仅有的消息和评论,基本都来自海外华人,或者出海国人。manus 号称在 GAIA 的测试中全面超过OpenAI,智慧程度达到目前智能体的顶峰。这套说辞马上就被善于抓热点的自媒体转化成“情绪点”,以“遥遥领先”的方式进行传播。

2025-03-07 17:46:19 871

原创 一文看懂Manus:实测体验+开源复刻方案,无需等待邀请码

很多朋友在问这个智能体产品的问题。用通俗的说法来理解:ChatGPT就像城市里的大型公共厨房,想做饭得去那里排队用他们的炉灶。而DeepSeek则像是家用电饭煲,公司能买得起,放在自己办公室就能用。Manus呢?过去用ChatGPT就像是你得手把手教厨师做菜:“先切菜,再放油,然后炒…”,每一步都得你指导。而Manus就像是升级版的私人厨师,你只需说:“我想吃红烧肉”,厨师自己就能完成从采购食材到烹饪再到摆盘的全过程,直接端出一盘香喷喷的成品。你完全不用管中间步骤,只管享用结果。

2025-03-07 17:44:06 1037

原创 一文读懂 Transformer,工作原理与实现全解析,从零基础到精通,只看这一篇,赶紧收藏!!!

循环神经网络和长短期记忆网络已经广泛应用于时序任务,比如文本预测、机器翻译、文章生成等。然而,它们面临的一大问题就是如何记录长期依赖。为了解决这个问题,一个名为 Transformer 的新架构应运而生。从那以后,Transformer 被应用到多个自然语言处理方向,到目前为止还未有新的架构能够将其替代。可以说,它的出现是自然语言处理领域的突破,并为新的革命性架构(BERT、GPT-3、T5等)打下了理论基础。Transformer 完全依赖于注意力机制,并摒弃了循环。

2025-03-06 18:07:48 836

原创 求职产品经理,该如何选择岗位和做准备?

或者说如何理解产品?(面试高频问题)

2025-03-05 11:26:52 1034

原创 最全梳理:一文搞懂RAG技术的5种范式!

高级 RAG 引入了具体的改进措施,以克服 Naive RAG 的局限性。为了提高检索质量,它采用了检索前和检索后策略。为了解决索引问题,高级 RAG 通过使用滑动窗口方法、细粒度分割和元数据的整合,改进了索引技术。此外,它还采用了多种优化方法来简化检索过程。模块化 RAG 架构超越了前两种 RAG 范式,具有更强的适应性和多功能性。它采用了多种策略来改进其组件,例如为相似性搜索添加搜索模块,以及通过微调完善检索器。为应对特定挑战,还引入了重组 RAG 模块和重排 RAG 管道等创新方法。

2025-03-05 11:24:38 986

原创 没有大模型经验,可以搞大模型吗?当然可以!做大模型一年半,经历了无数场面试。

对于学生来说,首要的自然是学习。学校背景如何、专业课成绩如何、基础知识是否扎实?面试时遇到学生,经常碰到的尴尬场面是:问数学题(高数/线代/概统),答曰大一学的忘了;问编程题(leetcode easy/medium 难度),答曰没刷题写不了;问模型结构(指 LLaMA),答曰平常都是调 ChatGPT API,不清楚。相当一部分候选人是答不上来 transformer 模型结构的——一半人承认自己不清楚细节,另一半人里 90% 是自以为自己知道、但实际不知道。

2025-03-03 18:00:39 715

原创 大模型面经——整理RAG基础与实际应用中的痛点

谈到大模型在各垂直领域中的应用,一定离不开RAG,本系列开始分享一些RAG相关使用经验,可以帮助大家在效果不理想的时候找到方向排查或者优化。本系列以医疗领域为例,用面试题的形式讲解RAG相关知识,开始RAG系列的分享~本篇主要是理论知识与经验;后续会结合最新的优化方法给出详细的优化代码,和实践中衍生的思考。下面是本篇的快捷目录。\1. RAG思路\2. RAG中的prompt模板\3. 检索架构设计这里有一张经典的图:已知信息:{context}

2025-02-27 17:41:19 801

原创 什么是大模型?有了大模型的应用经验之后,再谈对大模型的理解

大模型的本质就是一段有输入和输出,并能使用某种算法达到某种目的得计算机程序在刚开始接触大模型时,根本不明白大模型是个什么玩意,看着别人给出的定义一脸懵逼。不论是业内还是网上的文章,对大模型的普遍定义都是拥有巨大参数量和复杂计算的机器学习模型/深度学习模型。从定义中能够看出哪些东西?巨大参数量,复杂计算,机器/深度学习模型。说句实话,对大部分人来说看了这玩意有什么用,有谁能用自己的话说明白什么是大模型。

2025-02-26 11:04:45 831

原创 大模型技术全面解析,从大模型的概念,技术,应用和挑战多个方面介绍大模型

大模型指的是参数规模超过亿级甚至千亿级的深度学习模型。

2025-02-26 11:02:20 844

原创 从零构建企业级AI助理:顶尖大厂LangChain架构迭代中的四个关键决策

本文将结合 Uber、LinkedIn、Elastic、AppFolio 和 Replit 等知名企业的 LangChain 实践案例,从实际落地应用遇到的问题出发,详细解析这四个决策如何有效提升企业级 AI 助理的性能和可靠性。

2025-02-25 10:47:22 899

原创 AI大模型报告 | 《中国数字人发展报告(2024)》(附PDF下载)

工业和信息化部科技司副司长杜广达近日表示,下一步要持续强化标准引领,推进数字人术语、管理、服务等基础共性标准,数字身份多模态交互等关键技术标准,以及数字客服,数字员工等重点领域服务标准的研究与应用,建立健全数字人的标准体系。工业和信息化部信息通信专家委员会顾问武锁宁也指出,现在中国的数字人产业已经形成了比较完整的产业体系,对于那些需求的潜力比较大,能够实行规模化的应用领域应用侧形成规模化的需求和复制的需求,就有希望带动这个产业循环发展。公开数据显示,目前我国与数字人相关的企业达到114.4万家。

2025-02-24 11:38:11 446

原创 从零构建 DeepSeek R1:训练、公式与可视化全解析

随后,在正式的 DeepSeek-R1 训练中,他们对流程进行了更系统的设计,分阶段进行训练:先提供一部分初始数据,再进行 RL 训练,然后引入更多数据,再进行 RL……DeepSeek R1-Zero 是通过强化学习(Reinforcement Learning,RL)训练出来的,而在这个过程中,DeepSeek V3 充当了强化学习智能体(Agent),也就是在环境中执行动作的“Actor”。因此,他们将 R1 Zero 生成的答案进行人工审核,对其进行优化,使其更加清晰、结构化,并修正其中的错误。

2025-02-24 11:37:15 907

原创 哈工大博士历时半年整理的开源Pytorch知识手册+200余个常用函数

本手册中分为14章,从最基础的创建张量开始,逐步加深,**涵盖小伙伴们将会所有常用的函数。**为了方便小伙伴们的查阅,我们特意推出了带有书签版的PDF供大家下载。比起 TF 的框架环境配置不兼容,和 Keras 由于高度封装造成的不灵活,PyTorch 无论是在学术圈还是工业界,都相当占优势。,它凭借着对初学者的友好性、灵活性,发展迅猛,它深受学生党的喜爱,我本人也是使用的Pytorch框架。所以,我们小白学视觉团队花费了几个月,整理了这一份目前最全的Pytorch常用函数手册,

2025-02-22 16:41:23 467

原创 AI新纪元:DeepSeek爆火揭示的大模型应用与从业者未来

鲁为民博士清华学士,加州理工学院博士中国人工智能最高奖“吴文俊人工智能科学技术奖”2023年获得者刘井平博士华东理工大学副教授复旦大学博士多项研究成果在美团、淘宝、蚂蚁金服、华为等公司进行落地胡箐金智维首席科学家前Meta 旗下LLaMA大模型初创团队核心成员之一前微软技术部门负责人,Exchange online、Azure AI 等产品线研发负责人20年的AI技术研发与应用经验时间:2月22日星期六面向受众:大模型及AI技术人员和爱好者和企业技术主管等。

2025-02-21 16:52:31 904

原创 报告 | 清华大学《DeepSeek如何赋能职场应用?——从提示语技巧到多场景应用》(附下载)

手册详细讲解了DeepSeek的不同模式及其在创意激发、科研支持、项目管理等方面的赋能能力,同时提供了提示语优化技巧、应用案例和与其他工具的集成方案,帮助用户高效利用AI提升工作效率和创新能力。《DeepSeek如何赋能职场应用》手册介绍了DeepSeek在多个职场场景中的应用,从新媒体文案、营销策划、品牌设计,到数据分析、客户服务、代码开发等。由清华大学新闻与传播学院、人工智能学院双聘教授沈阳教授团队、中央民族大学新闻与传播学院向安玲老师,倾力打造。,助你从提示语技巧到多场景应用。

2025-02-21 11:15:58 190

原创 LangChain+RAG+Agent本地部署DeepSeek-R1商用级知识库,完美实现低代码可视化流程编排

1.使用 LangChain 封装的模型实例通过 get_model_instance_by_model_user_id、embed_query、invoke 以及 stream 等方法,实现 LLM 整体调用,无缝对接大语言模型推理服务。\2.构造上下文和消息列表利用 HumanMessage、SystemMessage 等消息类型将系统提示、历史对话、用户输入等进行整合,作为调用 LLM 的输入。\3.调用向量库进行语义检索。

2025-02-20 10:39:36 1619

原创 30岁转行AI大模型,刚好赶上风口!

30岁转行AI大模型,不仅是一次职业的转型,更是一次人生的突破。如果你也对AI感兴趣,不妨从现在开始学习,抓住这个风口,迎接属于你的未来!风口已至,你准备好了吗?

2025-02-20 10:30:41 1091

原创 DeepSeek LoRA微调+Ollama,微调模型本地部署终极指南!

最近deepseek非常火爆,在学习对deepseek进行微调训练后,尝试把模型部署到本地。以下记录下怎么保存模型以及怎么载入Ollama的过程。

2025-02-19 16:54:03 3177

原创 如何完美解锁DeepSeek-R1的结构化输出能力(基于LangChain)?

DeepSeek-R1这样的推理模型有着强大的深度思考能力,但也有着一些不同于通用模型的特点与用法,比如不支持函数调用,不支持结构化输出,o1甚至不支持系统提示(System Prompt)等。可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。掌握DeepSeek对于转行大模型领域的人来说是一个很大的优势,目前懂得大模型技术方面的人才很稀缺,而DeepSeek就是一个突破口。

2025-02-18 11:22:21 1217

原创 从0开始:用 Streamlit + LangChain 搭建个简易ChatGPT

是一个快速搭建 Web 应用的 Python 库,特别适合机器学习和 AI 相关项目。它允许开发者仅用几行 Python 代码,就能创建交互式的用户界面。你不需要写 HTML、CSS 或 JavaScript,也不需要进行前端开发,从而可以专注于项目的核心功能。而且,Streamlit 已经为创建 AI 聊天应用提供了内置支持。

2025-02-18 11:20:39 838

原创 幼儿教师必备“DeepSeek+”使用指南:教学应用场景+实操案例+隐藏用法→

录音完成后,通义智能系统能够即时为您生成详尽的会议纪要,涵盖全文摘要、章节概览、关键点梳理以及直观的思维导图,让您随时随地轻松回顾会议精华。更值得一提的是,如果在录音时启用了【区分发言人】功能,系统还会贴心地为每位发言人提供个性化的总结报告。

2025-02-17 11:39:47 1586

原创 理想汽车大模型算法工程师面试,被摁在地上摩擦。。。

自我介绍环节主要是让双方进入快速面试状态,这块没什么特别注意的,别磕巴就好,主要聊聊个人基本信息、教育背景、工作经历和技能特长等等。

2025-02-17 11:36:55 1186

原创 Docker镜像拉取慢?一个脚本帮你自动检测所有问题!(文末有彩蛋)

相信大家平时工作中经常遇到docker拉取镜像缓慢或下载中断的问题,一般来说其实就三个原因:1、dns服务器未正确配置,导致dns解析失败;2、默认的docker.hub由于墙的原因不可用,未配置可用的国内docker镜像源。这里提供一个python脚本,自动检测dns解析和镜像源是否可用,拉取前运行一下即可自动诊断。

2025-02-15 10:54:57 1322

原创 全网最详细最准确Dify+ollama+deepseek构建本地知识库,按照这篇教程来保证你不会出错!

可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。的爆火,远不止于此。

2025-02-15 10:50:11 3956

原创 中年程序员,裸转 AI,是条死路。。。

有粉丝向我咨询这样一个问题,我觉得这个问题具有一定的普遍性,因此决定撰写一篇文章来分享我的看法。在阐述我的观点之前,我想先声明:以下内容仅代表个人观点,可能存在偏差或不准确之处。如果您有不同的意见,欢迎留言交流。但请保持理性讨论,避免情绪化攻击,不要因为观点不同就相互指责。随着 AI 大模型的火热,有粉丝问我,他们在某个领域深耕已久,但未来可能要转向 AI 领域,是否应该放弃之前的积累,全力投入 AI 学习,并转换跑道?我个人认为,!

2025-02-14 11:05:54 850

原创 从青铜到王者,DeepSeek+Spring AI 搭建 RAG 知识库

在人工智能飞速发展的当下,大语言模型(LLMs)已广泛应用于各种自然语言处理任务。但它们也存在一些局限性,如 “幻觉” 问题,即生成的内容可能与事实不符或缺乏足够的准确性。为了解决这些问题,检索增强生成(Retrieval-Augmented Generation,RAG)技术应运而生。RAG 技术的核心在于将检索与生成相结合。传统的生成模型依赖大量的训练数据来生成回答,当面对新问题或新兴领域知识时,可能会产生不准确或不合逻辑的回答。

2025-02-13 10:49:01 1490

原创 教你本地复现Deep Research:DeepSeek R1+ LangChain+Milvus

此外,本篇文章,我们主要采用了市面上使用最多的多个开源产品,这相比闭源头的OpenAI,给了我们更多的灵活性和对部署成果的掌控力,此外,本地部署,也让我们企业数据的安全性多了更多保证,非常适合那些希望将此用于学术研究、内容生成等方向的用户来说。随后,它会完善每个部分,添加上章节标题和相应内容。接下来,我们对 Wikipedia 文章进行“文献综述”,将搜索到的文章进行解析,并将数据存储到向量数据库 Milvus 中(目前,我们只阅读一篇文章,因为如果每个链接都调用推理模型,本地的推理成本会非常高)。

2025-02-13 10:43:32 755

原创 国产之光DeepSeek火爆全网!AI岗位年薪百万,在职人现在还有机会转行吗?

可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。,而深度学习、机器学习、自然语言处理等技术岗位的薪资也位居前列,这些岗位的薪资水平均远高于其他传统行业,显示出AI技术岗位在当前就业市场中的强大吸引力和竞争力。

2025-02-13 10:39:40 672

原创 太绝了!字节内疯传的380页《从零开始大模型开发与微调基于PyTorch与ChatGLM》大模型必备书籍!

大模型是深度学习自然语言处理皇冠上的一颗明珠,也是当前AI和NLP研究与产业中最重要的方向之一。本书使用PyTorch 2.0作为学习大模型的基本框架,以ChatGLM为例详细讲解大模型的基本理论、算法、程序实现、应用实战以及微调技术,为读者揭示大模型开发技术。## 目录。

2025-02-12 10:14:47 1605

原创 LangChain+Neo4j:5分钟构建动态知识图谱

利用知识图谱从大量文档、视频中提取信息,建立实体之间的关系,有利于加速信息处理,提取文档中的数据,以及发现实体之间潜在关系和规律。AI大模型的快速发展,大模型和知识图谱的结合,有了更多可能性。本文我将演示下面我将演示如何在5分钟内上传数据源,构建一个动态知识图谱,可用于提取实体关系,并且与数据对话。这里使用的工具是大模型知识图谱构建器(LLM Knowledge Graph Builder )。

2025-02-12 10:14:04 819

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除