94级计算机科学,【信闻堂】“别来无恙,你在心上”——信控学院计算机科学与技术专业94级校友毕业20年返校重聚...

原标题:【信闻堂】“别来无恙,你在心上”——信控学院计算机科学与技术专业94级校友毕业20年返校重聚

7月28日,信控学院计算机科学与技术专业94级校友毕业20年再度重聚于母校,“叙友情、温真情、升感情、展豪情”,并与当年的老师欢聚一堂,举行了座谈会,共叙母校情、师生情。信控学院院长段中兴热情迎接各位校友,让大家再度感受到母校的温暖关怀。

3ff8f4c94a7504c72b4717ed83a102c3.png

96dde3d16bafce0612aa3a4bacf8bd5c.png

e3f83f6d69e9486ece9427dec6709bdd.png

座谈会在雁塔校区工科楼613顺利举办,会上信控学院院长段中兴就信控学院近年来的发展情况与建设成果向各位校友进行了详细介绍,感谢校友们对我院工作的关心与支持。校友们感受到了近年来母校的巨大变化,纷纷为信控学院的建设成果表示欣慰。紧接着各位校友依次发言,介绍了自己毕业以来的工作及发展情况,结合自己的校园时光畅谈了20年来的工作感悟,并从自己的工作经历出发,为学院发展建言献策。校友们多次提到,感谢母校的教育和培养,也将永远铭记老师们当初的谆谆教诲,同时也积极表达了今后加强校友间交流的期望。会场不时回荡着轻松欢乐的笑声和此起彼伏的掌声。

4cc0810842b436abd88a4f89fbd37ce5.png

下午,校友们在学院老师的陪同下前往草堂校区参观,汉韵唐风的特色建筑,明亮整洁的学习环境和舒适便捷的生活环境令大家赞不绝口,在参观过程中,校友们热切交谈,纷纷抒发对母校的热爱和对学生时代美好时光的留恋。

b259ba492a6fefa1731416bbc65ce957.png

52550ddab6f01bb0f61150b8db8fc467.png

校友与学院的发展是密不可分的,本次校友回归活动的成功举办进一步拓展了校友间的联系,也让校友们更多地了解到母校的新变化、新成果、新发展,更有力拉近了校友与学院之间的距离,充分发挥出学院在教育事业发展中的重要作用。本次校友交流也为今后信控学院更长足广阔的发展开创了崭新局面。

责任编辑:

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值