模型例题_初中数学:共顶点模型例题讲解(3),这个题有点难度~

通过巧妙构造辅助线,将一道复杂的几何题目转化为等腰直角三角形问题,利用勾股定理求解未知线段AD的长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

昨天中午在短视频上发了这道题,本意是当作业,鼓励同学们独立思考,灵活运用,好几位同学在评论区回复,需要讲解视频,刚好录完,我们一起看下这个题的解题思路。

【例3】

如图,AB=AC=10,∠BAC=45°,BC=CD,BC⊥CD,求AD的长。

4895168d6ade9a79986dd51918550200.png

分析:题目中让求AD的长,一般情况下,初中数学求边长都会在直角三角形中利用勾股定理或者三角函数来计算,偶尔也会与相似三角形结合,边长之比等于相似比求边长。

这个题中AD没有在直角三角形中,也找不到相似三角形模型。

该怎么办才好?

转化思想,把AD转化成等长的线段求解。

题中有一个非常特殊的条件,∠BAC=45°,初中几何题遇到特殊角,往往要和直角三角形结合。

作辅助线,把线段AC绕点C旋转90°,连接AE,BE。

de4ddb7a32525aa5703d2bbaadb4315d.gif

图中是不是出现了共顶点模型?

△ACE和△BCD是有公共顶点的等腰直角三角形,

所以,就会找到一组全等三角形帮助我们解题。

b333f17c43561f1a879b87e9624ecc27.png

△BCE≌△DCA

∴AD=BE

三角形ACE是等腰直角三角形

∠CAE=45°,AE=10√2

∴∠BAE=∠BAC+∠CAE=90°

在Rt△BAE中,

根据勾股定理:

BE²=AB²+AE²

BE=10√3

AD=10√3

本题的视频讲解:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值