矩阵光学 matlab,矩阵光学.doc

矩阵光学.doc

矩阵光学 魏光辉第一章 矩阵及其运算1.1矩阵、矢量和张量矩阵的概念:对角矩阵: (对角矩阵即为除了对角线的元素外,其它元素阶为零)单位矩阵:标量、矢量和张量:三维空间的m阶张量可以有个独立分量,n维空间的m阶张量可以有个独立分量。矢量可以视为一阶张量,标量可以视为零阶张量。电场是一个矢量。一个矢量可以用行阵或列阵来表示;一个二阶张量可以用方阵表示;m阶张量可以用行列矩阵表示。1.2矩阵的加法和乘法矩阵加法:矩阵乘法:A为矩阵,B为矩阵,C为,C为矩阵。其中。若,则B可以描述P维空间中的n阶张量,若,则C为矩阵,由此可见,一个张量矩阵可以被列数与其行数相同的方阵左乘,得到另一个具有相同行列数的矩阵。因此,一个用单列矩阵表示的矢量,被列数与其行数相同的方阵左乘,仍得相同行数的矢量。矩阵的减法:;由多项式为元素的矩阵可以进行分解,例:

矩阵连乘:A为矩阵,B为矩阵,C为矩阵,则,有。(注意:如果矩阵A和B中至少有一个是零矩阵,则它们的乘积C=AB必为零矩阵;但如果C=AB为零矩阵,则A和B不一定为零矩阵。)

矩阵乘法性质:矩阵乘法满足结合律;矩阵乘法不满足交换律;满足交换律的特例:(1)一个常数与矩阵相乘;(2)单位矩阵与任一同阶方阵对易;(3)任意方阵与其自身对易,并与其自身的任意次幂对易;(4)阶数相同的对角矩阵可以对易;满足乘法对加法的分配律:A(B+C)=AB+AC设A、B是行列数相同的两个矩阵,且K和L是两个常数,则有:K(A+B)=KA+KB;(K+L)A=KA+LA;K(LA)=(KL)A;K(AB)=(KA)B=A(KB).1.3变换的矩阵表示正交变换:认为长度不变的变换即为正交变换。在三维空间中,直角坐标系有一个转动,则有,其长度为保持不变,即,所以为正交变换。展开可写为:,其中称为正交矩阵。进行两次变换后可写为:进行n次变换后,则有:变换举例:研究矩阵的n次方,其中 其中,这是激光器谐振腔的ABCD方程。对标量、矢量和张量的概念作进一步讨论:标量:在正交变换下,数值不变的量。例如,矢量的长度。矢量:矢量的长度再坐标轴的正交变换下保持不变。如,在一直角坐标系的旋转用表示,其中,这里省略了矢量符号,变换后为,且,其中某一矢量B可以表示为,和分别为矢量B在旧、新坐标下的分量。用点乘方程两侧,则有。由此可见,正交矩阵的各个分量可以写为:,则。(注:微分算符的变换规则与矢量相同,即)张量:定义矢量的一种运算方法,并矢。设U和V为两个矢量,则,

则即为一个二阶张量,,其中,张量之间再进行并矢可以得到更高阶的张量。为了确定张量的正交变换规则,首先定义两条基本运算法则:张量与矢量点乘:,则有,类似地,但二者并不相等,即张量与矢量点乘不具有交换律。两个二阶张量的点乘:

这是一个标量,可以证明,满足交换律。由此可导出张量的正交变换的规则,设新、旧坐标系为和,张量可以表示为,用点乘方程的后部,则有,设,则有,此即为二阶张量在坐标轴进行正交变换时所遵循的变换规律。扩展到高阶张量为,对称张量: 反对称张量: 由定义可看出反对称张量对角元为0,即 可以用一个对称张量T(S)和一个反对称张量T(A)之和组合成一个二阶张量。证明:令,并设,由矩阵加碱法,则有,

根据矩阵对称性质,可知,则有,

两式联立可有,

1.4转置矩阵转置矩阵:特例:行阵的转置为列阵,列阵的转置为行阵;两个矩阵的转置等于它们各自转置并反转乘积的次序,即,推广到n个矩阵相乘的情况,则有。对称方阵:若方阵A的转置等于它自身,即。对称方阵性质:(1)其转置仍为对称方阵;(2)数乘对称方阵仍为对称方阵;(3)两对称方阵的和仍为对称方阵;(4)两对称方阵的乘积仍为对称方阵的条件为这两个方阵满足乘法规律,并适合乘法交换律,即;(5)单位方阵与任意同阶对称方阵乘积仍为对称方阵;(6)对称方阵的n次幂仍为对称方阵;(7)两个同阶对角方阵的乘积仍是对角方阵,且是对称方阵,n个同阶对称方阵的乘积仍为对角方阵,其对角元等于各因子相应对角元之积。正交方阵:若方阵A和它的转置为单位矩阵,即,则称A为正交方阵。单行矩阵为正交的条件是它左乘其转置列阵得到数1,即(总后面分析可见,正交方阵满足:)。5逆矩阵行列式:方阵A的行列式可表示为二阶行列式展开:三阶行列式展开:

行列式不为零的矩阵称为“非奇异矩阵”;两个方阵乘积的行列式,等于它们各自行列式的乘积:;n个方阵乘积的行列式,等于它们各自行列式的乘积:;(注意:相乘矩阵的行列式满足乘法交换律,即)逆矩阵:,称和互为逆矩阵,并且逆矩阵是唯一的。 (注:非奇异矩阵才有逆矩阵,这里为了避开矩阵的“伴随阵”和行列式的“代数余子式”等概念

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目录 第1章 电磁理论基础  1.1 电磁理论中的“符号矢量”方法  1.2 麦可斯韦方程组的独立方程与非独立方程,限定形式与非限定形式  1.3 麦可斯韦方程组的积分形式  1.4 边界条件  1.5 自由空间中的简谐场  1.6 位函数方法  参考文献 第2章 并矢格林函数  2.1 麦可斯韦方程组的并矢形式,电型和磁型并矢格林函数  2.2 自由空间并矢格林函数  2.3 并矢格林函数的分类  2.4 并矢格林函数的对称性  2.5 互易定理  2.6 辅助互易定理的传输线模型  2.7 导电平面半空间的并矢格林函数  参考文献 第3章 矩形波导 第4章 圆柱波导  4.1 具有离散本征值的圆柱波函数  4.2 圆柱波导  4.3 圆柱腔  4.4 同轴线  参考文献 第5章 自由空间中的圆柱体  5.1 具有连续本征值的圆柱矢量波函数  5.2 自由空间并矢格林函数的本征函数展开  5.3 导体圆柱、介质圆柱与介质覆盖导电圆柱  5.4 近似表达式  参考文献 第6章 完纯导电椭圆柱体  6.1 椭圆柱坐标系中的矢量波函数  6.2 第一类电型并矢格林函数  参考文献 第7章 完纯导电劈和半片  7.1 完纯导电劈的并矢格林函数  7.2 半片  7.3 半片存在时电偶极子的辐射  7.4 半片存在时磁偶极子的辐射  7.5 半片上隙缝的辐射  7.6 半片对平面波的绕射  7.7 圆柱和半片  参考文献 第8章 球形边界 第9章 导电圆锥边界  9.1 导电圆锥并矢格林函数  9.2 锥面上偶极子天线的辐射  9.3 导电圆锥对平面波的散射  9.4 圆锥边界本征值的计算  参考文献 第10章 平面分层媒质  10.1 平直地面  10.2 平直地面上电偶极子的辐射,索末菲公式  10.3 导电平面上的介质层  10.4 分层媒质的互易定理  10.5 本征函数展开  10.6 空气中的介质片  10.7 并矢格林函数的二维傅立叶变换  参考文献 第11章 非均匀媒质和运动媒质  11.1 平面分层媒质的矢量波函数  11.2 球面分层媒质的矢量波函数  11.3 非均匀球形透镜  11.4 运动的各向同性媒质中的简谐场  11.5 运动媒质中与时间相关的场  11.6 充有运动媒质的矩形波导  11.7 充有运动媒质的圆柱波导  11.8 运动媒质中的无限长导电柱体  参考文献 附录  A. 矢量分析和并矢分析  B. 标量格林函数  C. 傅立叶变换和汉克尔变换  D. 积分的鞍点法和贝塞耳函数乘积的半无限积分  E. 矢量波函数及它们相互关系  参考文献 外国人名对照

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值