若可以通过高速计算机应用牛顿定律,计算机硬件及网络02_牛顿运动三定律ppt课件...

2.1 牛顿运动三定律 2.2 力学中常见的几种力 2.3 牛顿运动定律的应用 2.4 牛顿运动定律的适用范围 第2章 牛顿运动三定律 位于美国华盛顿特区 国际标准局的铯原子钟 一、掌握牛顿定律的基本内容及其适 用条件. 二、熟练掌握用隔离体法分析物体的 受力情况,能用微积分方法求解变力作用 下的简单质点动力学问题. 2-0 教学基本要求 三、理解惯性系与非惯性系的概念, 了解惯性力的概念. 2.1 牛顿运动三定律 任何物体都保持静止或匀速直线运动的状态,直 到外力迫使它改变这种状态为止。 一、 牛顿第一定律 惯性和力的概念 时, 恒矢量 力是改变物体运动状态的原因。 惯性反映了物体改变运动状态的难易程度。 二、牛顿第二定律 (2) 直角坐标系中 自然坐标中 (1) 质量不变 三、 牛顿第三定律 • 成对性 —— 物体之间的作用是相互的; • 一致性 —— 作用力与反作用力性质一致; • 同时性 —— 相互作用之间是相互依存,同生同灭 。 讨论 2.2 力学中常见的几种力 一、 万有引力 用矢量表示为 引力常数 说明 (1) 依据万有引力定律定义的质量叫引力质量;依 据牛顿第二定律定义的质量叫惯性质量。实验表 明:对同一物体来说,两种质量总是相等。 (2) 万有引力定律只直接适用于两质点间的相互作用 (3) 重力是引力分量 物体所处的地 理纬度角 如图所示,一质点m 旁边放一长度为L 、质量为M 的杆,杆 离质点近端距离为l 解 : 例1 该系统的万有引力大小求 当 l L 时 杆、质点间引力 质元、质点间引力 取如图所示的坐标系 杆可看作是一质点 在坐标为x的位置取一质元 二、弹性力 常见弹性力有:正压力、张力、弹簧弹性力等. 弹簧弹性力 ——胡克定律 发生形变的物体,由于要恢复原状,而对与其接触 的物体产生力的作用。 ——由物体形变而产生的 弹性力的方向:垂直于接触面,指向形变物体的原状 。 弹性力的大小:在弹性限度内,跟施力物体的形变 成正比。 二、弹性力 F F TA TB TA TB A B 根据牛顿第三定律= -TATA= -TBTB 根据牛顿第二定律mAB a = TA- TB 若绳子质量忽略不计,则TA= TB,各处张力相等 三、摩擦力 表面光滑仍存在有一定的摩擦力 相对运动——滑动摩擦力 两个相互接触的物体,有相对运动或相对运动趋 势时,在接触面上产生的阻碍相对运动或相对运 动趋势的力。 相对运动趋势——静摩擦力 一般情况 2.3 牛顿运动定律的应用 例1.质量为m的物体放在水平桌面上,物体与桌 面间的最大静摩擦系数为 ,作用在物体上 一拉力F。 求(1)拉动该物体所需的最小拉力是多少? (2)夹角θ为多大时物体获得最大加速度? 解(1) (2) 30o 例2.如图:用一斜向上的力F 将重为G的木块压靠在 墙上,如不论用多大的力,都无法使木块向上 滑动,则木块与墙面的静摩擦因素满足: (A) (B) (C) (D) 解 选(B) 30o 狗拉质量为M的雪橇, 质量为m的木箱,M和m之间 的静摩擦系数为μ0,M和雪路面间的滑动摩擦系数 为μ,作用于雪橇的水平拉力为F. 求(1)雪橇的加速度、木箱和雪橇之间的静摩擦力 (2)作用在雪橇上的水平拉力不超过多少才能保证 木箱不致向后滑去。 例3 解 隔离物体受力分析 f m mg N F f f1 Mg N’ R F (1)F较小时,静摩擦力小于最大静摩擦力,雪橇和木 箱没有相对滑动 对m有 对M有 解上式得到: (2)当F增大时,雪橇和木箱的共同加速度越来越大, 静摩擦力也就越来越大,当增大到F0时,当a=a0, 静摩擦力达到最大的静摩擦力fmax 对M 解上式得到: 要使雪橇和木箱无相对滑动,则 对m 则有 例4 由地面沿铅直方向发射质量为m的宇宙飞船.试求 宇宙飞船能脱离地球引力所需的最小初速度.不计 空气阻力及其他作用力.(地球半径取6370km) 解: 选宇宙飞船为研究对象,飞船只受 地球引力 R r O 飞船要脱离地球引力,则r, 又v ≥ 0 最小初速度 设一高速运动的带电粒子沿竖直方向以 v0 向上运动,从 时刻 t = 0 开始粒子受到 F =F0 t 水平力的作用,F0 为常量 ,粒子质量为 m 。 水平方向 例5. 解 粒子的运动轨迹。求 运动轨迹 竖直方向 装沙子后总质量为M 的车由静止开始运动,运动过程中合 外力始终为 f ,每秒漏沙量为  。 t = 0 时 v = 0 解 取t 时刻车和车内沙子质量为 m。 例6. f 求t 时刻车运动的速度。 m  t 以初速度v0 竖直向上抛出一质量为m 的小球,小球除受 重力外,还受一个大小为αmv 2 的粘滞阻力。 解 例7. 求 小球上升的最大高度。 最高处速 度为零 mg mv2 2.4 牛顿运动定律的适用范围 一、 惯性系与非惯性系 a 遵守第二定律 不遵守第二定律 惯性系 非惯性系 2. 相对于惯性系作匀速直线运动的参照系也是惯性系 说明 3.其中,加速度是相对于惯性系的。 1. 牛顿运动定律只在惯性系中成立 T T m1g m2g 质量分别为 m1 和 m2 的两物体用轻细绳相连接后,悬挂在 一个固定在电梯内的定滑轮的两边。滑轮和绳的质量以及 所有摩擦均不计。当电梯以 a0=g/2 的加速度下降时。 解 例 绳中的张力。求 m 以地面为绝对参考系S,升降机为相对参考系S’ 例 一光滑斜面固定在升降机的底板上,如图所示,当升降机以 匀加速度a0 上升时,质量为m 的物体从斜面顶端开始下滑. y x mg x 方向 y 方向 物体对斜面的压力和物体相对斜面的加速度。求 解 二、 牛顿定律适用范围 牛顿定律适用于低速、宏观物体。 狭义相对论 高速运动问题 量子力学 微观粒子问题 例. 质量为m的匀质链条,全长为L,手持其上端,使下端离地 面为h.然后放手让它自由下落到地面上,如图所示。求:链条 落到地上的长度为y时,地面所受链条作用力的大小。 解:以链条为系统,向下为y正向。 t时刻,落地面链段my速度为零,即u=0, 空中链段(m-my)速度为v,受力如图。 由变质量物体运动微分方程可得 因在自由下落中 L h m y y y 地面所受链条的作用力的大小 L h m y y y

展开阅读全文

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值