Python数据挖掘入门与实战课程设计

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本书是数据科学初学者和进阶者的理想教材,系统讲解了数据挖掘的基础理论和实操技巧。通过使用Python及其数据分析库pandas、numpy和scikit-learn等工具,讲解从数据预处理、可视化到模型训练和评估的完整数据挖掘流程。书中结合算法原理、案例实战和代码实践,旨在培养读者的实际数据挖掘能力,并帮助他们为数据驱动的决策打下坚实基础。 Python

1. Python基础和语法入门

Python 是当今最流行的编程语言之一,以其简洁易读的语法和强大的社区支持而广受欢迎。本章旨在带领读者快速了解并掌握 Python 的基础语法,为后续学习数据科学、机器学习等高级主题打下坚实的基础。

1.1 Python的历史和特点

Python 由 Guido van Rossum 在 1989 年末开始设计,它的第一个公开发行版发行于 1991 年。Python 的设计理念强调代码的可读性和简洁的语法,尤其是使用空格缩进来区分代码块,而不是使用大括号或关键字。除了易于学习和使用,Python 还支持多种编程范式,包括面向对象、命令式、函数式和过程式编程。

1.2 安装Python和第一个Python程序

要在你的计算机上开始使用 Python,首先需要安装 Python 解释器。你可以从 Python 官网下载对应操作系统的安装包,并按照安装向导的指示完成安装。安装完成后,打开命令行工具,输入 python --version 来验证是否安装成功。如果出现版本号信息,则说明 Python 已成功安装。接着,我们可以编写第一个 Python 程序,通常是一个简单的打印 "Hello, World!" 的脚本:

# hello_world.py
print("Hello, World!")

运行这个脚本,你将在命令行看到输出结果 "Hello, World!",标志着你已经成功运行了自己的第一个 Python 程序。

1.3 Python的基本语法元素

Python 的基本语法元素包括变量赋值、数据类型、控制流语句、函数定义等。掌握这些基础是进一步学习 Python 的关键。

# 变量赋值
x = 10 # 整数赋值
y = "Hello, Python!" # 字符串赋值

# 数据类型
print(type(x)) # 输出: <class 'int'>
print(type(y)) # 输出: <class 'str'>

# 控制流语句
if x > 5:
    print("x is greater than 5")
else:
    print("x is less than or equal to 5")

# 函数定义
def greet(name):
    return f"Hello, {name}!"

# 调用函数
print(greet("Python")) # 输出: Hello, Python!

通过本章的学习,你将熟悉 Python 的核心概念,并能够编写简单的 Python 程序。随后的章节将进一步深入 Python 在数据科学领域的应用,包括数据处理、数据分析、模型建立等。

2. 数据预处理技巧

2.1 数据清洗的方法与步骤

2.1.1 缺失值的处理

在处理数据集时,我们会经常遇到数据不完整的情况,即数据集中存在缺失值。这些缺失值可能是由于数据收集错误、系统故障或者其他意外情况导致的。在进行数据分析之前,正确地处理这些缺失值是非常关键的步骤。

处理缺失值的一个常见方法是通过插值来填补缺失值。插值方法包括使用均值、中位数、众数或者其他统计方法来估计并填充缺失数据。此外,也可以根据数据的分布特性,采用随机数据、线性插值、多项式插值等更复杂的方法。

下面是一个使用pandas库处理缺失值的简单示例:

import pandas as pd

# 假设有一个DataFrame 'df'
df = pd.DataFrame({
    'A': [1, 2, None, 4],
    'B': [5, None, None, 8]
})

# 查看缺失值
print(df.isnull())

# 使用均值填充缺失值
df_filled = df.fillna(df.mean())

# 查看填充后的结果
print(df_filled)

在上述代码中, fillna() 函数是用于填充缺失值的方法。我们使用 df.mean() 来计算每列的均值,并用这些均值来填充对应的缺失值。当然,这只是一个非常基础的例子。在实际应用中,插值策略的选择应根据数据的具体情况和分析目的来确定。

2.1.2 异常值的识别和处理

异常值是指那些不符合数据整体分布的值,它们可能是由于测量误差、数据录入错误、或者真实的异常行为导致的。识别并处理异常值对确保数据质量非常重要。

识别异常值的方法很多,包括统计方法(如标准差、Z分数)、箱线图、基于邻近点的方法等。处理异常值通常包括忽略这些值、修正它们、或者使用特殊值(如NaN或特定标记)来替代。

import numpy as np

# 假设有一个含有异常值的Series 's'
s = pd.Series([1, 2, np.nan, 4, 400])

# 使用Z分数来识别异常值
from scipy import stats
z_scores = np.abs(stats.zscore(s))
threshold = 3  # 设置一个阈值

# 找到异常值
outliers = (z_scores > threshold)

# 处理异常值,可以是忽略、修正或者标记
cleaned_data = s[~outliers]  # 忽略异常值

# 查看处理后的结果
print(cleaned_data)

在这段代码中,我们使用了 scipy.stats 模块中的 zscore 函数来计算Z分数,并使用一个设定的阈值来确定哪些值是异常值。然后,我们创建了一个新的Series,其中不包含这些异常值。需要注意的是,异常值的处理方法需要谨慎选择,错误的处理方式可能会造成数据失真。

2.2 数据整合与转换

2.2.1 数据融合技术

数据融合(Data Fusion)是指将来自不同数据源的信息组合在一起,以创建一个统一的数据集。这通常涉及多种不同的数据整合技术,例如合并、连接(Join)、拼接(Concatenate)等。

在pandas中,我们可以使用 merge concat 函数来进行数据的整合。合并是将多个数据集依据一列或多列键值进行整合,而拼接则是在轴向上合并数据。

# 创建两个示例DataFrame
df1 = pd.DataFrame({'key': ['foo', 'bar', 'baz', 'foo'],
                    'A': [1, 2, 3, 4],
                    'B': [5, 6, 7, 8]})

df2 = pd.DataFrame({'key': ['foo', 'bar', 'baz', 'foo'],
                    'C': [9, 10, 11, 12],
                    'D': [13, 14, 15, 16]})

# 使用merge函数进行基于键值的合并
merged_df = pd.merge(df1, df2, on='key')

# 使用concat函数进行拼接
concat_df = pd.concat([df1, df2], axis=1)

print(merged_df)
print(concat_df)

在上述代码中,我们通过键值 'key' 合并了两个数据集,并展示了结果。 concat 函数通过设置 axis=1 实现了沿列的拼接。这些是数据整合中常用的操作,但需注意合并时可能出现的键值不匹配问题。

2.2.2 数据规范化和标准化

数据规范化(Normalization)和标准化(Standardization)是为了消除不同特征间可能存在的数值范围差异,使数据符合特定的格式要求。规范化一般指的是将数据缩放到[0, 1]区间内,而标准化是将数据按其均值进行中心化,并调整到特定的标准差,通常是单位标准差。

from sklearn.preprocessing import MinMaxScaler, StandardScaler

# 创建一个示例DataFrame
df = pd.DataFrame({
    'A': [1, 2, 3],
    'B': [4, 5, 6]
})

# 数据规范化
scaler_normalize = MinMaxScaler()
df_normalized = pd.DataFrame(scaler_normalize.fit_transform(df), columns=df.columns)

# 数据标准化
scaler_standardize = StandardScaler()
df_standardized = pd.DataFrame(scaler_standardize.fit_transform(df), columns=df.columns)

print(df_normalized)
print(df_standardized)

通过上述代码,我们使用了 MinMaxScaler StandardScaler 这两个类分别对DataFrame df 中的数据进行了规范化和标准化处理。在实际操作中,选择规范化还是标准化,需要根据数据的特性和后续处理的需求来决定。

2.2.3 特征提取与构造

特征提取与构造是从原始数据中生成新的特征,这些特征能够更好地表示数据的潜在信息,增强机器学习模型的性能。特征提取通常包括主成分分析(PCA)、因子分析等方法。

from sklearn.decomposition import PCA

# 创建一个高维数据集
df_high_dim = pd.DataFrame(np.random.randn(5, 20), columns=[f'col_{i}' for i in range(20)])

# 使用PCA进行特征提取
pca = PCA(n_components=2)
df_reduced = pca.fit_transform(df_high_dim)

# 查看降维后的数据
print(df_reduced)

在该代码中,我们生成了一个20维的随机数据集,并使用PCA将其降维到2维,降维后的数据可以用于后续的分析和模型构建。PCA是一种广泛使用的降维方法,它通过数据投影到新的坐标系统中,使得数据的方差最大化。

2.3 数据集划分与抽样技术

2.3.1 训练集、验证集和测试集的划分

在机器学习中,一般将数据集分为训练集、验证集和测试集三个部分。训练集用来训练模型,验证集用于模型选择和超参数调整,而测试集则用于评估模型性能。

from sklearn.model_selection import train_test_split

# 假设有一个完整的数据集
df = pd.DataFrame({
    'A': [1, 2, 3, 4, 5],
    'B': [6, 7, 8, 9, 10]
})

# 划分训练集和测试集,这里使用80%的数据作为训练集
df_train, df_test = train_test_split(df, test_size=0.2)

# 划分训练集和验证集,这里使用剩余的20%训练数据的80%作为验证集
df_train, df_val = train_test_split(df_train, test_size=0.25)

print(df_train)
print(df_val)
print(df_test)

上述代码展示了如何使用 train_test_split 方法将数据集划分为训练集、验证集和测试集。需要注意的是,划分比例和顺序根据实际需求调整,并且每次划分操作时都要确保随机性。

2.3.2 抽样方法与应用

抽样是数据处理中的一项重要技术,特别是在数据量很大时,全部加载和处理既不现实也不必要。抽样可以减少数据集大小,加速数据处理过程。常用的抽样方法有简单随机抽样、分层抽样等。

# 使用pandas进行简单随机抽样
sampled_data = df.sample(n=5, random_state=1)

# 使用分层抽样
stratified_sample = df.groupby('CategoricalColumn').sample(frac=0.1)

print(sampled_data)
print(stratified_sample)

在这段代码中,我们使用 sample 方法对DataFrame进行简单随机抽样,并通过分组后的 sample 方法实现了分层抽样。分层抽样尤其适用于分类特征分布极不均匀的情况,它能够保证每个类别在抽样结果中都有一定的代表性。

3. 数据可视化技术

在现代数据科学领域,数据可视化是一个至关重要的方面,它帮助我们以直观的方式理解数据,识别模式,以及将复杂的数据集转化为容易消化的信息。本章节将详细介绍常用的数据可视化库、实践案例以及创建交互式图表的技巧,带领读者深入了解数据可视化技术的丰富世界。

3.1 常用数据可视化库简介

3.1.1 Matplotlib的使用基础

Matplotlib是Python中最流行的绘图库之一,它为数据可视化提供了丰富的接口和多样的图表类型。从简单的折线图到复杂的三维图表,Matplotlib几乎能够创建任何种类的静态、动态、交互式图表。

import matplotlib.pyplot as plt

# 基础折线图
plt.plot([1, 2, 3, 4], [10, 15, 13, 17])
plt.title('Simple Line Plot')
plt.xlabel('x')
plt.ylabel('y')
plt.show()

在上面的代码段中,我们使用了 matplotlib.pyplot 模块创建了一个基础的折线图。我们首先导入了 plt 模块,然后通过 plot 函数绘制了简单的x和y轴数据。接着,我们添加了图表的标题和轴标签,并最终通过 show 函数展示了图表。通过这段代码,我们可以开始探索Matplotlib的潜力,逐渐深入到更高级的可视化技术中。

3.1.2 Seaborn与高级可视化技术

Seaborn是一个基于Matplotlib的高级绘图库,它提供了更高级的接口来制作更加美观和信息丰富的图表。Seaborn在数据集探索阶段尤其有用,因为它的许多函数都能直接与pandas的DataFrame对象协同工作。

import seaborn as sns

# 配置Seaborn样式
sns.set()

# 使用Seaborn绘制散点图
tips = sns.load_dataset("tips")
sns.scatterplot(data=tips, x="total_bill", y="tip")
plt.title('Scatter plot using Seaborn')
plt.show()

在上述代码中,我们首先导入了 sns 模块,并使用 sns.set() 方法设置了Seaborn的默认绘图样式。随后,我们加载了Seaborn自带的示例数据集,并通过 sns.scatterplot() 方法绘制了一个散点图。图表展示了顾客的总账单(total_bill)与小费(tip)之间的关系。

3.2 数据可视化实践

3.2.1 图形选择与应用场景

数据可视化的一个核心原则是选择正确的图表来传递信息。下面,我们将讨论不同类型图表的适用场景以及如何选择它们:

  • 折线图:用于展示趋势变化,例如股票价格随时间的变化。
  • 条形图:用于比较分类数据,例如不同商品的销售量。
  • 柱状图:同条形图类似,但在x轴上更长。
  • 散点图:探索两个连续变量之间的关系,例如身高与体重。
  • 热力图:显示多变量数据的密集程度,如矩阵或数据框。
  • 饼图:展示部分与整体之间的关系,例如市场份额。
  • 雷达图:适用于展示多个变量间的关系,常用于性能指标比较。

3.2.2 创建交互式图表的技巧

随着数据量的增加,有时候我们可能希望图表能够提供更丰富的交互体验。为此,我们可以使用Plotly这样的库来创建更加动态和互动的可视化。

import plotly.express as px

# 创建交互式散点图
fig = px.scatter(tips, x="total_bill", y="tip", color="sex", hover_name="day")
fig.show()

在上面的代码中,我们使用了Plotly的Express接口来创建了一个带有性别分类和悬停提示的散点图。通过 fig.show() ,我们可以在浏览器中查看一个交互式的图表,这增加了图表的信息丰富度和用户交互性。

通过这些实践和技巧,我们可以更好地将数据转化为可视化的信息,从而让数据分析和结果呈现更为生动、直观。在数据科学项目中,这些可视化技术是不可或缺的一部分,也是与非技术人员沟通的重要工具。随着实践的深入,我们将在数据可视化的道路上越走越远,利用丰富的可视化库来解决各种复杂的问题。

4. numpy库在数值计算中的应用

4.1 numpy基础

4.1.1 numpy数组的创建与操作

在进行数据处理和科学计算时,numpy库提供的数组对象是不可或缺的。numpy数组(ndarray)是一个多维数组对象,它能够高效地处理大型数据集。首先,我们来学习如何创建和操作numpy数组。

创建数组的基本方法是使用 numpy.array() 函数。这个函数能够接受一个列表,并将其转换为numpy数组。例如:

import numpy as np

# 创建一个一维数组
a = np.array([1, 2, 3])
print(a)

输出结果将是:

[1 2 3]

此外,numpy还提供了多种生成数组的函数,如 numpy.zeros() , numpy.ones() , numpy.arange() , numpy.linspace() 等,它们分别用于创建全零数组、全一数组、包含一系列数字的数组,以及在指定区间内等间距取值的数组。

数组的操作包括索引、切片、迭代等,这些操作和Python列表的操作类似,但在性能上更优。

# 访问数组中的元素
print(a[0])  # 输出 1

# 切片操作,选取数组的一部分
print(a[1:3])  # 输出 [2 3]

# 迭代数组中的元素
for element in a:
    print(element)

索引和切片操作可以扩展到更高维的数组中。高维数组可以理解为数组的数组,例如二维数组可以看作是表格,而三维数组可以看作是多个表格的集合。

4.1.2 常用数学函数与统计方法

numpy不仅提供了高效的数组对象,还提供了一系列的数学函数和统计方法。这些函数和方法能够直接在ndarray对象上操作,极大地简化了数值计算的复杂度。

例如,计算数组的均值、标准差、最大值、最小值等统计量,可以直接使用 numpy.mean() , numpy.std() , numpy.max() , numpy.min() 等函数。

# 计算数组的均值
mean_value = np.mean(a)
print(mean_value)  # 输出 2.0

# 计算数组的标准差
std_deviation = np.std(a)
print(std_deviation)  # 输出 1.0

除了统计方法,numpy还提供了一系列的数学函数,如三角函数、指数函数、对数函数等,这些函数的输入和输出都是numpy数组,实现了向量化计算。

# 计算数组中每个元素的平方根
sqrt_a = np.sqrt(a)
print(sqrt_a)  # 输出 [1.  1.41421356 1.73205081]

通过上述示例,我们可以看到numpy库在基础数值计算中的强大功能,它不仅提高了数据处理的效率,还使得数值计算更为直观和简洁。随着学习的深入,我们将探索更多高级的numpy功能,如广播机制、形状操作等,这些内容将在后续章节中进行详细讨论。

5. pandas库在数据操纵与分析中的应用

5.1 pandas数据结构概览

5.1.1 Series和DataFrame的使用

在数据处理和分析过程中,pandas 库为我们提供了多种数据结构,其中最核心的是 Series DataFrame Series 是一维的标签化数组,可以存储任何数据类型(整数、字符串、浮点数、Python 对象等),而 DataFrame 是二维的标签化数据结构,可以看作是 Series 的容器。

import pandas as pd

# 创建一个简单的 Series 对象
series = pd.Series([1, 2, 3, 4, 5])

# 创建一个 DataFrame 对象
data = {'Name': ['Tom', 'Nick', 'Krish', 'Jack'],
        'Age': [20, 21, 19, 18]}
df = pd.DataFrame(data)

print(series)
print(df)

Series 类似于 Excel 中的某一列,而 DataFrame 类似于 Excel 的表格。 DataFrame 可以通过行标签(index)和列标签(columns)进行数据的查询和操作。

5.1.2 数据选择与过滤

pandas 提供了强大的数据选择和过滤功能,可以通过各种方式对数据进行快速访问和操作。基本的数据选择可以使用索引( [] )、 loc (标签)和 iloc (位置)。

# 选择 Series 中的一个元素
element_series = series[1]

# 选择 DataFrame 中的一行
row_df = df.loc['Nick']

# 选择 DataFrame 中的一列
column_df = df['Name']

# 使用 iloc 选择 DataFrame 中的特定位置元素
element_position = df.iloc[1, 2]

print(element_series)
print(row_df)
print(column_df)
print(element_position)

数据过滤通常用于基于某些条件来选择数据子集。例如,我们可以基于 Age 列的值来过滤 DataFrame 中的行。

filtered_df = df[df['Age'] > 19]
print(filtered_df)

这种过滤技术在处理实际数据集时非常有用,可以快速筛选出符合特定条件的数据。

5.2 数据分组与聚合计算

5.2.1 分组操作 GroupBy

GroupBy 是 pandas 中处理数据分组的强大工具,可以将数据集按照一个或多个键拆分成多个组,并对每一个组进行聚合操作。它提供了一种理解数据的分组方式,之后可以应用聚合函数,例如 sum() , mean() , max() , min() 等。

# 使用 GroupBy 对 DataFrame 中的 Name 列进行分组,并计算每组的 Age 的平均值
grouped = df.groupby('Name')['Age'].mean()

print(grouped)

分组后, GroupBy 对象可以迭代每个组,也可以转换成字典形式。

5.2.2 聚合函数与应用

聚合函数在数据处理中是经常使用的操作,通过聚合函数,我们可以从数据中提取重要的统计信息。除了前面提到的聚合函数,pandas 还支持自定义函数应用于分组对象。

# 使用 GroupBy 对 Name 列分组,并应用一个自定义的聚合函数计算每组的 Age 的总和
def sum_of_age(x):
    return x.sum()

grouped_sum = df.groupby('Name')['Age'].agg(sum_of_age)

print(grouped_sum)

在实际应用中,我们通常需要对分组后的数据进行复杂的聚合计算,自定义函数提供了一种灵活性,允许我们定义任何我们想要的计算逻辑。

5.3 时间序列分析

5.3.1 日期时间数据的处理

在数据处理中,时间序列分析是必不可少的一部分,pandas 提供了强大的工具来处理日期时间类型的数据。 pandas.to_datetime 可以用来解析日期时间字符串,而 DateOffset 可以用来处理日期时间的偏移。

import pandas as pd

# 创建一个日期时间序列
dates = pd.to_datetime(['2023-01-01', '2023-01-02', '2023-01-03'])
print(dates)

# 生成一个日期偏移序列
offset_dates = dates + pd.DateOffset(months=1)
print(offset_dates)

5.3.2 时间序列的分析方法

时间序列分析涉及到时间相关数据的聚合、转换和解释。pandas 中的 resample() 方法可以用于重新采样时间序列数据,这在进行时间序列分析时尤其有用。

# 使用 resample() 对日期时间序列进行月度采样
monthly_series = df['2023'].resample('M')['Sales'].sum()
print(monthly_series)

通过时间序列分析,我们可以从数据中发现季节性模式、趋势、周期性等特征,这对于理解数据的历史和预测未来非常重要。

通过本章节的介绍,我们学习了如何使用 pandas 库来处理和分析数据。这些技能对于任何涉及数据操纵和分析的项目都是至关重要的,无论是进行数据清洗、时间序列分析还是执行复杂的聚合操作。pandas 的灵活性和强大的数据处理能力使得它成为数据分析工具库中不可或缺的一部分。

6. scikit-learn库中的数据挖掘算法

scikit-learn是一个强大的Python机器学习库,它提供了众多的简单且高效的工具,用于数据挖掘和数据分析。本章节将带领读者深入探讨scikit-learn库中的数据挖掘算法,并通过实际例子来展示如何在实际项目中应用这些算法。

6.1 数据挖掘算法概述

scikit-learn中的数据挖掘算法可以大致分为三类:分类、聚类以及降维算法。每类算法都有其特定的应用场景和性能评估指标。

6.1.1 算法分类与应用场景

数据挖掘算法的选择依赖于问题的性质。例如,分类算法适用于目标变量是有限个离散值的场景,如邮件是否为垃圾邮件的分类问题。聚类算法则用于数据中没有标签,需要将数据分组的场景,比如客户细分。而降维算法主要应用于处理高维数据,以减少数据计算量、简化模型或去除噪声。

6.1.2 算法性能评估指标

在选择合适的算法后,我们需要确定评估模型性能的方法。对于分类问题,准确率、召回率、F1分数和ROC曲线是常用的评估指标。对于聚类问题,轮廓系数、Davies-Bouldin指数和Calinski-Harabasz指数常被用来衡量聚类效果。在降维问题中,我们关注的是在降维前后数据的可解释性和模型性能的变化。

6.2 常见算法实战

scikit-learn提供了许多易于使用的算法接口。本部分将重点介绍决策树、随机森林、K-means和PCA等常见算法的实战应用。

6.2.1 分类算法:决策树、随机森林

决策树是一种常用的分类算法,它通过递归地分割特征空间来建立模型。随机森林是决策树的集成,它通过构建多个决策树并进行投票来改善性能。

from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier

# 加载数据集
iris = load_iris()
X, y = iris.data, iris.target

# 创建决策树模型
decision_tree = DecisionTreeClassifier()
decision_tree.fit(X, y)

# 创建随机森林模型
random_forest = RandomForestClassifier()
random_forest.fit(X, y)

6.2.2 聚类算法:K-means、层次聚类

K-means是一种基于划分的聚类算法,旨在将n个数据点划分为k个簇。层次聚类是基于距离的聚类算法,通过连续合并或分割来形成聚类层次。

from sklearn.cluster import KMeans
from sklearn.cluster import AgglomerativeClustering

# 使用K-means算法
kmeans = KMeans(n_clusters=3)
kmeans.fit(X)

# 使用层次聚类算法
hierarchical = AgglomerativeClustering(n_clusters=3)
hierarchical.fit(X)

6.2.3 降维算法:PCA、t-SNE

PCA(主成分分析)是一种线性降维技术,通过正交变换将可能相关的变量转换为一组线性不相关的变量。t-SNE(t-distributed Stochastic Neighbor Embedding)是一种非线性降维方法,特别适用于高维数据的可视化。

from sklearn.decomposition import PCA
from sklearn.manifold import TSNE

# 应用PCA降维
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)

# 应用t-SNE降维
tsne = TSNE(n_components=2)
X_tsne = tsne.fit_transform(X)

这些算法在实践中都有着广泛的应用,例如,在文本挖掘、图像识别、生物信息学等领域。了解和掌握这些算法对于IT专业人员来说,是数据挖掘和机器学习项目中不可或缺的技能之一。

本章将scikit-learn中的主要数据挖掘算法做了一个大致的概述,并通过具体的代码示例展示了如何实现它们。下一章,我们将深入探讨CRISP-DM数据挖掘流程,了解如何将这些算法集成到整个数据挖掘项目中去。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本书是数据科学初学者和进阶者的理想教材,系统讲解了数据挖掘的基础理论和实操技巧。通过使用Python及其数据分析库pandas、numpy和scikit-learn等工具,讲解从数据预处理、可视化到模型训练和评估的完整数据挖掘流程。书中结合算法原理、案例实战和代码实践,旨在培养读者的实际数据挖掘能力,并帮助他们为数据驱动的决策打下坚实基础。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值