声呐图像数据集_基于CycleGAN的真实图像数据集生成,用于前瞻性声纳

ABSTRACT

In this paper, we propose a novel method to generate realistic acoustic datasets for forward-looking sonars. A forward-looking sonar, which is also known as an acoustic camera, outperforms other imaging sensor when applied in underwater tasks as it can provide more accurate and detailed information about the environment, even in dark or turbid water. However, the difficulty and high cost of acquiring acoustic images in real experiments encourage researchers to consider the generation of simulated acoustic image datasets. In particular, deep learning-based methods demonstrated high performance in computer vision tasks, such as in object detection. However, a large dataset is necessary in most cases. In the proposed method, we first build a novel user-friendly acoustic image simulator based on 3D modeling software. Then, the CycleGAN is applied to generate realistic acoustic images based on the generated dataset from the simulator. The experimental results demonstrate that our method can generate effective and realistic acoustic datasets with relatively simple operations.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值