python修改csv文件中列的数据类型_pandas读取CSV文件时查看修改各列的数据类型格式...

本文介绍了如何使用Pandas查看和修改CSV文件中列的数据类型。包括查看列的dtype、使用astype、to_numeric等方法进行数据类型转换,并提供了处理含有非数字值的列的策略。
摘要由CSDN通过智能技术生成

下面给大家介绍下pandas读取CSV文件时查看修改各列的数据类型格式,具体内容如下所述:

我们在调bug的时候会经常查看、修改pandas列数据的数据类型,今天就总结一下:

1.查看:

Numpy和Pandas的查看方式略有不同,一个是dtype,一个是dtypes

print(Array.dtype)

#输出int64

print(df.dtypes)

#输出Df下所有列的数据格式 a:int64,b:int64

2.修改

import pandas as pd

import numpy as np

df = pd.read_csv('000917.csv',encoding='gbk')

df = df[df['涨跌幅']!='None']

df['涨跌幅'] = df['涨跌幅'].astype(np.float64)

print(df[df['涨跌幅']>5])

ps:在Pandas中更改列的数据类型

先看一个非常简单的例子:

a = [['a', '1.2', '4.2'], ['b', '70', '0.03'], ['x', '5', '0']]

df = pd.DataFrame(a)

有什么方法可以将列转换为适当的类型࿱

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值