今天我们通过一个例子来介绍python爬取数据的一般步骤,用到的工具包括python的经典模块requests和BeautifulSoup,另外结合刚学习的任务流工具TaskFlow来完成代码开发。
我们先来看一下要爬取的数据,网址是http://data.10jqka.com.cn/funds/gnzjl/,通过chrome的开发者工具分析我们可以比较容易找到后台数据加载网址为http://data.10jqka.com.cn/funds/gnzjl/field/tradezdf/order/desc/page/{page_num}/ajax/1/free/1/
其中page_num的位置为要查询第几页的数据,在网页上看到概念一共有6页数据,所以page_num取值为1-6
图示1
这里有个小技巧,可以先点击图示1左上角的清空按钮,把已经加载的网址先清理掉,然后在原始网页上点第二页,就能看到图片左下角新加载的网址,点开右边“Preview” 看到资金流数据相关的内容,就能确定这个网址是用来加载数据的。
在chrome浏览器中输入 http://data.10jqka.com.cn/funds/gnzjl/field/tradezdf/order/desc/page/1/ajax/1/free/1/,并打开chrome开发者工具,在网页源码中找到数据所在table标签为
...
抓取数据的完整源码如下import time
import requests
from bs4 import BeautifulSoup
from taskflow import engines
from taskflow.patterns im