java三次样条函数求导_三次样条曲线算法的改进及Java语言实现

本文探讨了三次B样条曲线在插值中的局限性,尤其是非局部化和波动问题。通过结合微分弦长累积原理,提出了一种改进算法,解决了这些问题。该方法使用积累弦长作为自变量,构建样条插值函数,确保封闭曲线的最优拟合。同时,详细介绍了如何在Java中实现这一算法,包括计算积累弦长、构造插值函数和应用高斯消元法求解。
摘要由CSDN通过智能技术生成

1 引 言 美国数学家 I.J.Schoenberg 于 1946 年提出的 B 样条曲线, 现在已得到了广泛的应用。在实际应用中, 比较多的是采用 3 次 B 样条曲线。在文献[1]中给出了平面坐标系下的三次 B 样条插值曲线的方程式 三次 B 样条插值在各种可能的插值中使得均方曲率 为最小, 即在一定意义下最为“光顺”。它可以保证各相邻离散样点区间段直到二阶导数连续, 因而光滑度较高。所以该插值法也是在工程应用中使用得最多的一种插值方法。但在使用中我们发现, 三次 B 样条插值也存在着一大缺陷, 它不是局部化的, 每个节点都会影响到全局, 虽然影响是随着远离该点而衰退的, 但是由于存在着误差的远距离扩散, 使得样条插值也会有“多余”的波动, 特别是在间距不均匀以及其它一些特殊场合更为显著[1]。根据三次 B 样条插值函数的基本要求, 函数变量必须单调递增(或减), 这对于封闭性拟合曲线来说, 难以实现。本文我们设想了采用普通三次 B 样条插值与微分弦长积累相结合的办法, 即各相邻离散样点弦长积累, 并以各样点积累弦长为自变量构造样点弦长函数, 再与三次样条插值函数合并, 寻求封闭样条曲线的最优拟合的办法。结果将该混合算法与原三次样条算法的求解过程进行比较和分析后, 表明该算法 能很好地解决上述样条插值的不足。 2 微分弦长累积原理 设平面曲线 方程为 , 当曲线 有奇异时, 用自变量 x 的多项式形式的样条插值就不甚适应。但是, 应该注意到, 有时这种奇异性是由自变量的选取所引起的而不是曲线固有的。例如单位圆 本身并不具有任何奇异性, 但将它表达为 (2) 则首先它已经不是单值函数, 而且在 处有导数奇异点 , 这就带来了插值处理的困难。一般当然是可以解决的, 例如在插值函数中引用足以反映奇点行为的成分, 但方法复杂了。如果用极坐标 来表达, 则成为 或者用参数表达 就可以避免上述问题。为了面向一般的问题, 我们讨论参数表达的平面曲线: (3) 特别有利的是以弧长作为参数 a, 因为这是曲线自身的内在坐 标。 设待插曲线的样点为 由于弧长本身还是不知道的, 因此可以采用“积累弦长”(如图 1): 令 设想以积累弦长 为自变量, 则两个函数 和 在节点 的样点值为 在区间 上分别作样条插值函数 X(s)和 Y(s), 即得过点 插值曲线对于封闭曲线, 则命 而采用周期性边界条件 ( 如图 2(a))。 3 三次 B 样条函数算法的改进由微分弦长累积原理可知, 要想利用曲线内在坐标这一优势, 则 必须构造以积累弦长 s 为自变量的过样点的样条插值函数 X (s),Y(s)。考虑到三次 B 样条插值函数变量必须单调递增(或减)这一基本要求, 因而采用算法组合的形式, 具体分析类同于三次 B 样条插值函数的推理过程, 有: 其中 根据输入的离散样点, 首先求出相邻点的积累弦长 si 和积累弦长差 hi, 再分别将离散点 xi 坐标的值(yi 坐标同理)和 si 及 hi 代入三次 B 样条曲线函数, 根据导数连续的性质和边界条件构造矩阵, 利用高斯消元法求出 Mxi(或 Myi)。高斯消元法的基本思想是用逐次消去一个未知数( 矩阵元素) 的办法把原来的矩阵化为等价的( 即具有相同解答的)三角形矩阵, 再利用回代法求出该等价三角形矩阵的各未知数( 矩 阵变量), 从而得出 X 关于弦长 s 的三次 B 样条函数 X(s), (Y(s)同理), 最后根据样条函数 X(s)和 Y(s),近似地将该拟合曲线分成若干小直线段, 并将其绘出, 最终得到所需要的三

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值