python 解方程 sympy_Python数据处理篇之Sympy系列(五)---解方程

本文介绍了Python的Sympy库在解方程方面的应用,包括使用solve()解多元一次方程、linsolve()解线性方程组、nonlinsolve()解非线性方程组以及dsolve()求解微分方程。通过实例代码展示了各种方程的求解过程。
摘要由CSDN通过智能技术生成

前言

sympy不仅在符号运算方面强大,在解方程方面也是很强大。

本章节学习对应官网的:Solvers

官方教程

(一)求解多元一次方程-solve()

1.说明:

解多元一次方程可以使用solve(),在sympy里,等式是用Eq()来表示,

例如:2x=42x=4 表示为:Eq(x*2, 4)

2.源代码:

"""

解下列二元一次方程

2x-y=3

3x+y=7

"""

# 导入模块

from sympy import *

# 将变量符号化

x = Symbol('x')

y = Symbol('y')

z = Symbol('z')

# 解一元一次方程

expr1 = x*2-4

r1 = solve(expr1, x)

r1_eq = solve(Eq(x*2, 4), x)

print("r1:", r1)

print("r1_eq:", r1_eq)

# 解二元一次方程

expr2 = [2*x-y-3, 3*x+y-7]

r2 = solve(expr2, [x, y])

print("r1:", r2)

# 解三元一次方程

f1 = x+y&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值