超宽带雷达回波模拟与Matlab应用:从信号生成到图像展示

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本文将深入探讨超宽带雷达的工作原理及其在探地雷达领域的应用。通过Matlab工具,我们将演示如何生成超宽带脉冲信号,并模拟这些信号在地下介质中的传播和回波形成过程。我们将分析关键步骤,包括脉冲生成、传播模型建立、回波形成、接收信号处理以及图像显示,特别是如何将回波数据转化为可见的双曲线灰度图像。此外,还将探讨Matlab Simulink在构建复杂雷达系统模型中的应用,以及如何使用Matlab进行雷达系统设计的优化和算法验证。 gray_picture_雷达matlab_回波模拟_matlab_超宽带雷达_探地雷达_

1. 超宽带雷达基本原理介绍

1.1 超宽带雷达的定义与应用领域

超宽带(UWB)雷达是一种使用纳秒级或更短脉冲进行探测的雷达系统。这种雷达的突出特点是在很宽的频带上传输信号,通常定义为带宽与中心频率之比大于20%。其应用领域广泛,包括军事、民用和科学研究等多个方面,如地下探测、穿透成像、目标定位和速度测量等。

1.2 超宽带雷达工作原理

UWB雷达发射极窄的无线电脉冲,这些脉冲会以光速在介质中传播。当这些脉冲遇到不同介质的交界面时,部分能量会被反射回来。通过测量发射脉冲与接收到的反射脉冲之间的时间延迟,可以确定目标的距离和位置。此外,由于脉冲宽度极窄,其分辨率高,能够提供更详细的探测信息。

1.3 超宽带雷达的优势与挑战

超宽带雷达的主要优势在于其高距离分辨率,能够区分接近的多个目标。同时,它具有良好的穿透能力,可以探测到遮蔽物后的物体。然而,其挑战在于技术实现复杂度高,信号处理要求严格,以及对环境因素变化的敏感性。在未来的雷达系统设计和信号处理技术中,这些挑战需要通过不断创新来解决。

通过以上内容的介绍,读者可以对超宽带雷达有一个初步的了解,并对其背后的技术原理有一个大致的认识。在后续章节中,我们将深入探讨雷达系统中脉冲生成、信号处理和模拟的更具体细节。

2. 脉冲生成步骤说明

2.1 脉冲信号的理论基础

2.1.1 脉冲信号的定义与特性

脉冲信号是一种在很短的时间内完成快速上升和下降的电信号,通常在电子和通信系统中用于信号的定时和同步。其基本特性包括脉冲宽度、脉冲幅度、脉冲间隔以及脉冲形状。

在雷达系统中,脉冲信号的定义与特性尤为重要,因为它们直接关联到系统的分辨率、探测距离和抗干扰能力。一个理想的脉冲信号拥有陡峭的上升沿和下降沿,以及在脉冲间隔期间的平坦基线。脉冲宽度越窄,雷达系统的距离分辨率越高;脉冲幅度越高,则雷达系统的探测距离越远。

2.1.2 脉冲生成的数学模型

从数学角度分析,脉冲生成可以通过函数来描述。最常见的脉冲波形是矩形脉冲,其数学模型可以用阶跃函数(Heaviside step function)H(t)表示:

H(t) = 0, for t < 0
H(t) = 1, for t >= 0

结合该阶跃函数,一个基本的矩形脉冲信号p(t)可以表示为:

p(t) = A * H(t) - A * H(t - τ)

其中,A是脉冲的幅度,τ是脉冲宽度。当考虑脉冲上升和下降时间时,可以使用指数函数或其他适当的函数对边缘进行建模。

2.2 脉冲生成的技术实现

2.2.1 实际脉冲生成方法

在实际应用中,脉冲生成可以采用多种方式实现,常见的有:

  • 电子电路方式:使用晶体管或可控硅等电子器件快速地开启和关闭信号通路,生成所需的脉冲波形。
  • 数字脉冲生成器:利用数字逻辑电路或专用的数字脉冲生成器芯片来产生精确的时间间隔和宽度的脉冲信号。
  • 软件控制方式:通过编程控制高速数字信号处理器(DSP)或者现场可编程门阵列(FPGA),生成各种复杂的脉冲波形。

2.2.2 脉冲调制技术细节

脉冲调制是将信息编码到脉冲信号中的过程,常用的方法包括脉冲幅度调制(PAM)、脉冲宽度调制(PWM)和脉冲位置调制(PPM)。

  • PAM通过改变脉冲的幅度来传递信息。
  • PWM通过调整脉冲的宽度来编码信息,而不改变脉冲的幅度。
  • PPM则是通过改变脉冲的相对位置来编码信息,这是一种时域上的调制方式。

在雷达系统中,PWM和PPM可用于提高信号的带宽效率,并且能够增强系统的抗干扰能力。

2.2.3 脉冲生成示例代码

以下是使用MATLAB来生成一个简单的脉冲信号的代码示例。此代码生成了一个脉冲宽度为0.1秒,幅度为1的矩形脉冲。

% 设定脉冲参数
amplitude = 1; % 脉冲幅度
pulse_width = 0.1; % 脉冲宽度
t = 0:0.01:1; % 时间向量,从0到1秒

% 生成脉冲信号
pulse_signal = amplitude * (t < pulse_width);

% 绘制脉冲信号
plot(t, pulse_signal);
title('Pulse Signal');
xlabel('Time (s)');
ylabel('Amplitude');

这段代码首先定义了脉冲的幅度和宽度,并创建了一个时间向量。然后通过条件运算符生成脉冲信号,并使用 plot 函数将其绘制出来。

在上述代码中,我们假设理想条件下的脉冲信号。在现实中,由于硬件限制,脉冲的上升沿和下降沿可能不会那么陡峭。因此,实际应用中还需要考虑这些因素对脉冲形状的影响。在下一节中,我们将详细探讨脉冲调制技术的应用及其对雷达性能的影响。

3. 传播模型建立与电磁特性考虑

在超宽带雷达系统中,传播模型的建立是理解信号如何在空间中传播的关键。同时,电磁特性是评估雷达性能和定位准确性的重要因素。本章节将深入探讨这两个重要主题,从电磁波的传播特性开始,一直到地下介质的电磁特性研究。

3.1 超宽带雷达的传播模型

3.1.1 电磁波在空间中的传播

在雷达系统中,电磁波的传播特性是影响信号接收质量的基础。超宽带雷达发射的脉冲信号具有很宽的频率范围,这使得信号在空间中的传播特性变得复杂。理解电磁波的传播特性,包括电磁波的衰减、反射和绕射等因素,对于预测回波信号的行为至关重要。

电磁波在介质中传播时会受到多种因素的影响,包括:

  • 自由空间传播 :在真空中,电磁波以光速传播,不会受到介质的阻碍。但在实际的雷达应用中,电磁波需要通过空气或其他介质传播,这会导致能量的衰减。
  • 介质损耗 :电磁波通过不同介质时,介质的介电常数和磁导率会影响波的传播。通常,这些介质对高频信号的吸收更大,导致信号衰减。
  • 多径效应 :在复杂的传播环境中,电磁波可能会通过多种路径到达接收点,造成信号的干涉和衰落。

3.1.2 雷达方程和传播损耗

雷达方程是分析雷达系统性能的一个基本工具。它描述了雷达发射功率、目标反射截面、传播损耗和接收机灵敏度之间的关系。雷达方程可以用以下公式表示:

[ P_r = \frac{{P_t G_t G_r \lambda^2 \sigma}}{{(4\pi)^3 R^4 L}} ]

其中:

  • ( P_r ) 是接收功率
  • ( P_t ) 是发射功率
  • ( G_t ) 是发射天线增益
  • ( G_r ) 是接收天线增益
  • ( \lambda ) 是信号波长
  • ( \sigma ) 是目标的有效反射面积(RCS)
  • ( R ) 是目标距离
  • ( L ) 是系统损耗因子

传播损耗( L )包括自由空间损耗、介质损耗、多径效应等。在超宽带雷达的应用中,由于信号的带宽很宽,需要考虑信号频率对传播损耗的影响。

3.2 电磁特性的理论分析

3.2.1 电磁波的反射和折射原理

当电磁波遇到不同介质的界面时,会发生反射和折射现象。根据电磁理论,入射波、反射波和折射波之间的关系遵循菲涅尔方程和斯涅尔定律。

  • 菲涅尔方程 :描述了电磁波在界面处的反射和透射的振幅比例,适用于任意角度和任意极化方式。
  • 斯涅尔定律 :表明了入射角和折射角之间的关系,即入射波和折射波分别与界面的法线成特定角度。

通过理解这些原理,超宽带雷达系统可以更准确地解释回波信号,从而提高目标检测和定位的准确性。

3.2.2 地下介质的电磁特性研究

地下介质具有不同的电磁特性,这些特性会显著影响超宽带雷达的探测能力。地下介质的介电常数、电导率和磁导率是影响电磁波传播的三个主要参数。

  • 介电常数 :影响电磁波的传播速度和衰减程度,较大的介电常数通常会导致更高的信号衰减。
  • 电导率 :决定了介质对电磁波的吸收能力。导电性较好的介质能够吸收更多的电磁能量,导致信号强度下降。
  • 磁导率 :影响介质对电磁波的相位延迟,磁性介质可能会引起信号的额外延迟或相位变化。

通过研究地下介质的电磁特性,可以优化雷达的设计和信号处理算法,以提高在复杂介质中探测目标的能力。

接下来,我们将更深入地探讨回波信号的形成与处理技术,这是雷达系统设计中至关重要的一步。

4. 回波信号的形成与处理

4.1 回波信号的理论基础与模型

4.1.1 回波信号的形成机制

回波信号是雷达系统在发射脉冲信号后,由目标反射回来的信号。这个过程涉及到电磁波的传播、目标的反射特性以及信号的传播损耗等多个因素。在超宽带雷达系统中,回波信号的形成尤为重要,因为它直接关系到雷达能够检测到的目标信息的质量和可靠性。

回波信号的形成机制可以通过雷达方程来描述。雷达方程是电磁波传播理论在雷达系统中的应用,它考虑了发射功率、天线增益、目标截面积、距离损耗以及接收机灵敏度等多个参数。具体而言,雷达方程表达了接收机接收到的回波功率与上述各个参数之间的定量关系。在超宽带雷达中,由于脉冲宽度很短,所以具有高时间分辨率,可以对目标进行精细的探测。

4.1.2 回波信号的数学描述

为了对回波信号进行深入的分析和处理,需要建立数学模型来描述它的特性。在数学层面,回波信号可以看作是发射信号经过目标反射后,根据目标的几何和电磁特性变化得到的结果。一个基本的回波信号模型可以表示为:

[ s_r(t) = \alpha \cdot s(t-\tau) \cdot e^{j(2\pi f_c \tau + \phi)} ]

其中,( s(t) ) 是发射的脉冲信号,( s_r(t) ) 是接收到的回波信号,( \alpha ) 是由目标反射特性决定的幅度因子,( \tau ) 是信号传播的时间延迟,( f_c ) 是载波频率,( \phi ) 是由于目标特性引起的相位变化。这个模型假设了目标的反射特性是线性和时不变的,且信号在传播过程中没有发生失真。

4.2 回波信号的处理技术

4.2.1 信号去噪与增强技术

回波信号在实际接收过程中,由于各种噪声和干扰的影响,往往需要进行去噪处理才能进一步分析。常用的方法包括带通滤波器、小波变换、卡尔曼滤波等。带通滤波器可以有效地滤除带宽外的噪声,而小波变换则能够在时频域内对信号进行更精细的处理,卡尔曼滤波则适用于有动态模型的噪声信号。

代码块展示一个简单的带通滤波器实现:

import numpy as np
import scipy.signal as signal

# 设计一个带通滤波器
def design_bandpass_filter(lowcut, highcut, fs, order=5):
    nyq = 0.5 * fs
    low = lowcut / nyq
    high = highcut / nyq
    b, a = signal.butter(order, [low, high], btype='band')
    return b, a

# 应用带通滤波器
def apply_bandpass_filter(data, lowcut, highcut, fs, order=5):
    b, a = design_bandpass_filter(lowcut, highcut, fs, order=order)
    y = signal.lfilter(b, a, data)
    return y

# 示例参数
fs = 1000  # 采样频率
lowcut = 150  # 低切频率
highcut = 400  # 高切频率
order = 6  # 滤波器阶数

# 生成模拟信号
data = np.random.randn(1000)
filtered_data = apply_bandpass_filter(data, lowcut, highcut, fs, order)

# 分析滤波前后的信号
print("Filtered signal:", filtered_data)

在上述代码中, design_bandpass_filter 函数用于设计滤波器,而 apply_bandpass_filter 函数将设计好的滤波器应用于实际数据。这种方法能够有效地去除信号中的噪声成分,增强目标回波信号。

4.2.2 时间域与频率域的信号处理

信号处理在时间域和频率域都有广泛的应用。时间域的处理主要关注信号波形的形态变化,如脉冲压缩、时间延迟估计等;频率域的处理则关注信号的频谱特性,如频谱分析、频率选择性滤波等。

在处理回波信号时,将信号从时间域转换到频率域,可以通过快速傅里叶变换(FFT)来实现。频率域分析可以帮助我们更好地理解信号的频谱分布,识别特定频率成分,甚至可以用于信号的压缩处理,如匹配滤波器的设计。

import matplotlib.pyplot as plt

# 对模拟数据进行FFT处理
fft_data = np.fft.fft(filtered_data)
fft_freq = np.fft.fftfreq(len(data), d=1/fs)

# 绘制频率域的幅度谱
plt.figure(figsize=(12, 6))
plt.plot(fft_freq, np.abs(fft_data))
plt.title("Frequency Domain Signal")
plt.xlabel("Frequency (Hz)")
plt.ylabel("Amplitude")
plt.grid(True)
plt.show()

通过上例代码的执行,我们可以将时域中的信号转换为频率域表示,并绘制出幅度谱,这有助于我们更深入地理解信号的结构和特性。通过结合时间域和频率域的处理技术,可以对回波信号进行更全面的分析与优化。

5. 接收机信号处理技术应用

在超宽带雷达系统中,接收机扮演着至关重要的角色,它负责捕获并放大回波信号,并且通过各种信号处理技术,如滤波、数字化处理等,以提高雷达性能。本章节将详细介绍接收机信号处理的原理,包括信号的捕获、放大以及滤波技术,并探讨高级数字信号处理技术在雷达中的应用,最终实现实时信号处理和反馈控制。

5.1 接收机信号处理的原理

5.1.1 接收机对信号的捕获与放大

接收机必须能够准确捕获微弱的回波信号,这需要高性能的天线和灵敏度极高的接收前端。回波信号通常包含丰富的信息,但其强度远远低于发射信号,因此,放大回波信号成为接收机设计中的一个关键步骤。

天线接收到的回波信号首先通过低噪声放大器(LNA),以最小化噪声的同时增强信号。然后信号经过一系列的滤波、放大和混频步骤,最终转换到一个适合后续处理的中频(IF)或基带频率。这些步骤要求接收机必须具备良好的线性度、动态范围和频率选择性,以确保信号的真实性和降低失真。

代码块示例:

% 示例代码:回波信号放大与噪声抑制
% 假设输入信号为回波信号的模拟波形
input_signal = ...; % 回波信号的向量
noise_signal = ...; % 噪声信号的向量

% 合成实际接收信号(带噪声)
received_signal = input_signal + noise_signal;

% 使用低噪声放大器
% 假设放大器的增益为GAIN
GAIN = 10; % 增益值
amplified_signal = GAIN * received_signal;

% 通过滤波器抑制高频噪声
[b, a] = butter(4, 0.1); % 4阶巴特沃斯低通滤波器,截止频率为0.1
filtered_signal = filtfilt(b, a, amplified_signal);

% 输出处理后的信号
disp(filtered_signal);

该代码块演示了信号放大和噪声抑制的基本过程。参数说明和逻辑分析将在下文详细讨论。

5.1.2 接收机中的信号滤波技术

接收机的滤波器是处理信号的关键组件,它能够有效地去除带外噪声和干扰信号。通常,滤波器会依据雷达系统的工作频带进行设计,使用低通、带通或带阻滤波器。除了模拟滤波器,数字滤波器在现代雷达系统中也逐渐得到广泛应用。

数字滤波器可以实现更复杂的滤波功能,如自适应滤波、多速率滤波等。这些滤波器利用数字信号处理技术,能够精确控制滤波器参数,以适应不同环境和目标情况,从而提高雷达系统的鲁棒性和性能。

代码块示例:

% 示例代码:使用数字滤波器处理信号
% 假定filtdemo设计了一个低通滤波器
[b, a] = butter(8, 0.3); % 8阶巴特沃斯低通滤波器,截止频率为0.3
% 应用该滤波器到已知信号
filtered_signal = filter(b, a, input_signal);

% 使用频率分析工具绘制滤波器的频率响应
freqz(b, a, 1024, 'half');

在上述代码中,使用了一个8阶的巴特沃斯低通滤波器进行信号处理,并利用 freqz 函数来展示滤波器的频率响应特性。

5.2 高级信号处理技术的实现

5.2.1 数字信号处理技术在雷达中的应用

数字信号处理(DSP)技术为现代雷达系统提供了广泛的可能性。DSP通过采用快速傅里叶变换(FFT)、自适应滤波算法、波束形成技术等,可以大幅提升雷达的性能,比如分辨率、灵敏度、抗干扰能力等。

例如,FFT算法可以用来分析雷达信号的频率成分,以检测和定位多目标。自适应滤波算法可以根据环境的变化实时调整其参数,从而有效抑制干扰和噪声。波束形成技术则通过相控阵天线的控制,实现对特定方向的信号增强和抑制。

代码块示例:

% 示例代码:FFT分析与信号检测
% 假设input_signal是经过预处理的信号
% 计算FFT并绘制频谱
N = length(input_signal);
Y = fft(input_signal);
P2 = abs(Y/N);
P1 = P2(1:N/2+1);
P1(2:end-1) = 2*P1(2:end-1);

% 使用MATLAB绘图功能绘制频谱
f = Fs*(0:(N/2))/N;
plot(f, P1);
title('单边频谱');
xlabel('频率 (Hz)');
ylabel('|P1(f)|');

% 检测信号中可能存在的目标
% 假设目标信号频率已知
known_freq = 500; % 目标频率值
target_peaks = findpeaks(P1, 'MINPEAKHEIGHT', max(P1)*0.1, 'MINPEAKDISTANCE', N/10);

% 输出检测到的峰值位置和对应的频率
disp(target_peaks);

在该代码中,使用了FFT算法来分析信号的频谱,并通过峰值检测技术来识别信号中的特定目标。

5.2.2 实时信号处理与反馈控制

实时信号处理是现代雷达系统设计中的另一项关键技术,它要求系统能够以非常快的速度处理信号,并做出及时响应。为了实现这一点,通常需要使用高性能的处理器和优化的算法。同时,反馈控制系统可以实时调整雷达的参数,如增益、频率、相位等,以优化性能。

例如,时间延迟调整(TDOA)和频域多普勒处理技术可以在实时处理中用于确定目标的位置和速度。通过这些技术,雷达系统能够实时更新其检测策略,对快速移动的目标保持跟踪。

代码块示例:

% 示例代码:实时TDOA分析
% 假设有多路接收信号
% 确定各通道间的时间差
time_diffs = [0, 0.001, -0.002]; % 时间差向量
% 信号的时延估计
delays = linsolve(time_diffs, input_signals);

% 使用时延估计结果进行目标位置估算
target_position = estimate_position(delays);

% 输出估计结果
disp(target_position);

% 控制反馈回路
% 依据目标位置调整雷达参数
control_signal = ...; % 根据估算的位置生成控制信号
adjust_parameters(control_signal);

此代码块仅作为概念展示,实际应用中,信号处理和控制策略会更加复杂,需要深入分析多通道信号的相互关系,并通过反馈调整雷达的运行参数。

在本章的介绍中,详细讨论了接收机信号处理技术的应用,包括信号捕获与放大、滤波技术、数字信号处理、实时信号处理等关键内容。通过对这些关键技术的深入探讨,我们展示了接收机在雷达系统中的重要性,并说明了如何应用高级信号处理技术以提升雷达性能。

6. Matlab在雷达信号处理和模拟中的作用

6.1 Matlab环境与工具介绍

Matlab是一种高级的数值计算语言,广泛应用于工程、科学、数学等领域。它的基本功能包括矩阵运算、数据可视化以及一系列内置函数,这对于雷达信号处理尤其有用,因为雷达数据处理常涉及复杂数学运算和图形分析。

6.1.1 Matlab软件的基本功能

Matlab的核心是其高级矩阵运算能力,它允许用户执行快速线性代数运算,这在处理雷达信号时可以简化多维数据处理过程。此外,Matlab还具备强大的图形处理能力,可以创建2D和3D图形,这使得信号可视化变得直观和易于理解。

6.1.2 Matlab在工程计算中的应用

工程计算中,Matlab的应用不仅限于数据处理,它还提供了工具箱来支持特定的工程应用,如信号处理、图像处理和神经网络等。这些工具箱为工程师提供了现成的函数和算法,可以大幅缩短开发时间和提高工作效率。

6.2 Matlab在雷达信号处理中的应用

Matlab是雷达信号处理中常用的工具之一,尤其是在信号模拟、分析和算法开发方面。它的信号处理工具箱提供了大量用于分析、设计和实现信号处理系统和算法的函数和应用程序。

6.2.1 Matlab信号处理工具箱的使用

Matlab信号处理工具箱包含了滤波器设计、频谱分析、时频分析、波形分析等功能。用户可以利用这些功能轻松地对雷达信号进行去噪、增强以及各种变换处理。例如, fft 函数可以用来快速计算信号的傅里叶变换,这对于信号的频域分析非常有用。

6.2.2 雷达信号模拟与分析实例

利用Matlab进行雷达信号模拟的过程通常包括创建一个信号模型,然后在模拟的雷达环境中测试该模型。以脉冲雷达为例,一个简单的雷达信号模拟可能包括生成一个脉冲信号,模拟目标的回波,再通过信号处理技术如匹配滤波来提取目标信息。

以下是使用Matlab进行信号模拟的一个简短实例:

% 假设我们有一个采样频率为Fs的雷达系统
Fs = 1e9; % 1 GHz
t = 0:1/Fs:1e-6; % 生成一个时间向量

% 生成一个理想的脉冲信号
pulse = rectpuls(t-5e-7, 100e-9);

% 通过一个简单的雷达系统模型模拟回波信号
echo = [pulse, zeros(1,5e6)]; % 假设目标距离延迟为500ns

% 使用匹配滤波器增强信号
matched_filter = conj(fliplr(pulse));
[correlation, lags] = xcorr(echo, matched_filter);

% 提取并绘制相关输出
max_corr = max(abs(correlation));
[~, ind] = max(abs(correlation));
lag_time = ind/Fs;
plot(lags/Fs, correlation);
hold on;
plot(lag_time, max_corr, 'ro');
xlabel('Time (s)');
ylabel('Correlation');
title('Matched Filtering of Radar Echo');

在上述代码中,首先生成了一个理想的脉冲信号和一个模拟的回波信号。然后应用了一个匹配滤波器来增强信号并提取目标的位置信息。Matlab中内置的 xcorr 函数用于计算信号间的互相关,最终的相关输出用图形表示,可以清晰地看到目标的延迟时间。这种模拟对于理解雷达系统如何在实践中运行至关重要,同时也为雷达系统的优化提供了基础。

Matlab在雷达信号处理和模拟中的应用远不止于此,它的高级工具箱为复杂算法的实现和测试提供了理想平台,极大地提升了雷达系统的开发效率和可靠性。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本文将深入探讨超宽带雷达的工作原理及其在探地雷达领域的应用。通过Matlab工具,我们将演示如何生成超宽带脉冲信号,并模拟这些信号在地下介质中的传播和回波形成过程。我们将分析关键步骤,包括脉冲生成、传播模型建立、回波形成、接收信号处理以及图像显示,特别是如何将回波数据转化为可见的双曲线灰度图像。此外,还将探讨Matlab Simulink在构建复杂雷达系统模型中的应用,以及如何使用Matlab进行雷达系统设计的优化和算法验证。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值