用计算机二分法求方程的近似解教案,3.1.2 用二分法求方程的近似解 教案 (1)

3.1.2用二分法求方程的近似解

一、教学目标:

知识与技能

(1)通过具体实例理解二分法的概念及其适用条件,了解二分法是求方程近似解的常用方法。

(2)能借助计算器用二分法求方程的近似解;

过程与方法

(1)借助计算器用二分法求方程的近似解,让学生充分体验近似的思想、逼近的思想和程序化地处理问题的思想及其重要作用,并为下一步学习算法做知识准备.

情感态度与价值观

(1)从中体会函数与方程之间的联系及其在实际问题中的应用;

(2)体会数学逼近过程,感受精确与近似的相对统一.

二、重点难点

重点:二分法原理及其探究过程,用二分法求方程的近似解

难点:对二分法原理的探究,对精确度、近似值的理解

三、教学方法

通过让学生观察、思考、交流、讨论、发现幂函数的性质.

四、教学过程

(一)设置情景,提出问题

问题1:你会求哪些类型方程的解?

小组讨论有哪些方程不会求解?

并让学生把所提问题归纳并板书到黑板上

问题2:能不能求方程的近似解?

(二)互动探究,获得新知

(1)以求方程x3+3x-1=0的近似解(精确度0.1)为例进行探究

探究1:怎样确定解所在的区间?

(1)图像法(2)试值法

复习:〈1〉方程的根与函数零点的关系;〈2〉根的存在性定理

探究2:怎样缩小解所在的区间?

李咏主持的幸运52中猜商品价格环节,让学生思考:

(1)主持人给出高了还是低了的提示有什么作用?

Fortran是一种主要用于数值计算的高级编程语言,其中的二分法(也称为牛顿法的一种简化版)是一种常见的数值根算法。它的基本思想是通过不断缩小函数值相异区间的方式逼近零点,即方程的根。以下是使用Fortran实现二分法的基本步骤: 1. **初始化**:选择一个初始区间[a, b],使得f(a) * f(b) < 0,意味着在这个区间内存在至少一个零点。 2. **迭代**:在每个循环里,计算中间点c = (a + b) / 2,并计算f(c)。 - 如果f(c) == 0,那么找到一个精确的根,返回c。 - 如果f(a) * f(c) < 0,说明根在(a, c),将b更新为c。 - 否则,如果f(c) * f(b) < 0,说明根在(c, b),将a更新为c。 3. **停止条件**:当满足一定的精度要(如绝对或相对误差小于预设阈值),或者区间的长度足够小(例如小于某个很小的正数),就认为找到了近似的根并结束循环。 以下是一个简单的Fortran程序框架示例: ```fortran program binary_search implicit none real :: a, b, c, epsilon, x integer :: i, max_iter ! 初始化 a = ... ! 左端点 b = ... ! 右端点 epsilon = ... ! 精度阈值 max_iter = ...! 最大迭代次数 do i = 1, max_iter c = (a + b) / 2 x = ... ! 根据实际函数计算 f(c) if (abs(x) < epsilon) then print *, "Found root approximately at: ", c exit end if if (sign(1, x) * sign(1, f(a)) <= 0) then b = c else a = c end if ! 检查是否达到最大迭代次数 if (i >= max_iter) then print *, "Max iterations reached, no solution found." exit end if end do end program binary_search ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值