深耕于土地利用变化的同学,可能经常在一些论文中看到土地模拟预测的方法,比如马尔科夫链、人工神经网络、clue-s模型、元胞自动机(CA)、最小二乘法、ANN-CA模型、PLS-PP模型等时间序列、马尔科夫(Markov)以及元胞自动机-马尔科夫(CA-Markov)相结合,而且近年来在国外的相关著名刊物上有频频看到这些方法的身影,但是很多同学可能会望而却步,因为这些方法大部分都是通过编程代码实现的,如果简单一些,可以利用matlab编写少量的代码。因此在做研究之前,不得不先系统学习一些基础语法,时间成本可能不太允许,那该怎么办呢?

好的,今天给大家介绍一个比较著名的土地模拟预测的软件IDRISI,其是由美国克拉克大学实验室研发的,软件内部集成了CA-Markov等模块,模块所具有的自定义设置和原理介绍,大大减少模拟预测过程中编程工作量,并且模拟预测的结果更为可靠。
