两个连续正整数的积_连续整数积的裂项公式

3b5a3e41fa7848e0009406cac682a49e.png

有关含“…”整数求和问题,往往需要将各加数分裂为两数的差,然后采用错位相加抵消法进行简便计算,此时就需要用到连续整数积的裂项公式。

(一)单独正整数n的裂项公式

由于n(n+1)-(n-1)n=n2+n-n2+n=2n,

所以n=[n(n+1)-(n-1)n]/2.

例如,计算:101+102+103+…+2019.

解:原式=[101×102-100×101+102×103-101×102

+…+2019×2020-2018×2019]/2

=[-100×101+2019×2020]/2

=2034140.

(二)两个连续整数积n(n+1)的裂项公式

由于n(n+1)(n+2)-(n-1)n(n+1)

=n(n+1)[(n+2)-(n-1)]

=3n(n+1),

所以n(n+1)=[ n(n+1)(n+2)-(n-1)n(n+1)]/3.

例如,计算:1×2+2×3+3×4+…99×100。

解:原式=[1×2×3-0×1×2+2×3×4-1×2×3+3×4×5-2×3×4

+…+99×100×101-98×99×100]/3

=[0+99×100×101]/3

=333300.

(三)三个连续整数积n(n+1)(n+2)的裂项公式

仿照(一)、(二)的推导可得:

(n+1)(n+2)(n+3)=[(n+1)(n+2)(n+3)(n+4)-n(n+1)(n+2)(n+3)]/4;

(四)三个连续整数积(n+1)(n+2)(n+3)(n+4)的裂项公式

(n+1)(n+2)(n+3)(n+4)

=[(n+1)(n+2)(n+3)(n+4)(n+5)-n(n+1)(n+2)(n+3)(n+4)]/5。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值