有关含“…”整数求和问题,往往需要将各加数分裂为两数的差,然后采用错位相加抵消法进行简便计算,此时就需要用到连续整数积的裂项公式。
(一)单独正整数n的裂项公式
由于n(n+1)-(n-1)n=n2+n-n2+n=2n,
所以n=[n(n+1)-(n-1)n]/2.
例如,计算:101+102+103+…+2019.
解:原式=[101×102-100×101+102×103-101×102
+…+2019×2020-2018×2019]/2
=[-100×101+2019×2020]/2
=2034140.
(二)两个连续整数积n(n+1)的裂项公式
由于n(n+1)(n+2)-(n-1)n(n+1)
=n(n+1)[(n+2)-(n-1)]
=3n(n+1),
所以n(n+1)=[ n(n+1)(n+2)-(n-1)n(n+1)]/3.
例如,计算:1×2+2×3+3×4+…99×100。
解:原式=[1×2×3-0×1×2+2×3×4-1×2×3+3×4×5-2×3×4
+…+99×100×101-98×99×100]/3
=[0+99×100×101]/3
=333300.
(三)三个连续整数积n(n+1)(n+2)的裂项公式
仿照(一)、(二)的推导可得:
(n+1)(n+2)(n+3)=[(n+1)(n+2)(n+3)(n+4)-n(n+1)(n+2)(n+3)]/4;
(四)三个连续整数积(n+1)(n+2)(n+3)(n+4)的裂项公式
(n+1)(n+2)(n+3)(n+4)
=[(n+1)(n+2)(n+3)(n+4)(n+5)-n(n+1)(n+2)(n+3)(n+4)]/5。