r语言liftchart_如何优化逻辑回归(logistic regression)?

本文介绍了如何使用R语言进行多元逻辑回归分析,包括数据预处理、逐步选择模型、评估模型性能以及处理缺失值的方法。通过示例展示了如何使用`glm`函数构建模型,分析变量间的相关性,以及如何利用AIC、BIC等指标对比不同模型的优劣。最终,文章讨论了过度离散问题及如何选择最佳模型。
摘要由CSDN通过智能技术生成

泻药,可以参考下我们的案例:http://tecdat.cn/?p=2640​tecdat.cn

R语言多元Logistic回归 应用案例

多元Logistic回归

如何进行多重逻辑回归

可以使用阶梯函数通过逐步过程确定多重逻辑回归。此函数选择模型以最小化AIC,而不是像手册中的SAS示例那样根据p值。另请注意,在此示例中,步骤函数找到了与“ 手册”中的过程不同的模型。

通常建议不要盲目地遵循逐步程序,而是要使用拟合统计(AIC,AICc,BIC)比较竞争模型,或者根据生物学或科学上合理的可用变量建立模型。

多重相关是研究潜在自变量之间关系的一种工具。例如,如果两个独立变量彼此相关,可能在最终模型中都不需要这两个变量,但可能有理由选择一个变量而不是另一个变量。

多重相关

创建数值变量的数据框

###只选择那些数字变量或可以制作数字 ###将整数变量隐藏到数值变量 Data.num $ Status = as.numeric(Data.num $ Status) Data.num $ Length = as.numeric(Data.num $ Length) Data.num $ Migr = as.numeric(Data.num $ Migr) Data.num $ Insect = as.numeric(Data.num $ Insect) Data.num $ Diet = as.numeric(Data.num $ Diet) Data.num $ Broods = as.numeric(Data.num $ Broods) Data。 num $ Wood = as.numeric(Data.num $ Wood) Data.num $ Upland = as.numeric(Data.num $ Upland) Data.num $ Water = as.numeric(Data.num $ Water) Data.num $ Release = as.numeric(Data.num $ Release) Data.num $ Indiv = as.numeric(Data.num $ Indiv) ###检查新数据框架 headtail(Data.num) 1 1 1520 9600.0 1.21 1 12 2 6.0 1 0 0 1 6 29 2 1 1250 5000.0 0.56 1 0 1 6.0 1 0 0 1 10 85 3 1 870 3360.0 0.07 1 0 1 4.0 1 0 0 1 3 8 77 0 170 31.0 0.55 3 12 2 4.0 NA 1 0 0 1 2 78 0 210 36.9 2.00 2 8 2 3.7 1 0 0 1 1 2 79 0 225 106.5 1.20 2 12 2 4.8 2 0 0 0 1 2 检查变量之间的相关性 ###注意我在这里使用了Spearman相关

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值