笛卡尔心形线公式表白c语言_听说AP微积分这个重要知识点,可以用来表白?!-"浪漫"的极坐标系...

这篇博客讲述了数学家笛卡尔与心形线的故事,解释了如何通过极坐标转换和AP微积分的知识来绘制心形线。在直角坐标系与极坐标系的对比中,展现了极坐标的魅力,强调其在解析几何和数学表达中的应用。文章适合AP微积分学习者,旨在帮助理解极坐标并提供一种别样的学习乐趣。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

66412b8a288be1b5e2c3828aaabd027b.png

同学们是否听过这样一个凄美的爱情故事,关于数学家笛卡尔和瑞典公主。在《数学的故事》中,1649年,斯德哥尔摩的街头,52岁的笛卡尔邂逅了18岁的瑞典公主克里斯汀,成为了她的数学老师,每天形影不离的相处使他们彼此产生爱慕之心,公主的父亲国王知道后勃然大怒,笛卡尔被流放法国。

8975a6301064235617447ba61662b406.png

流放中的笛卡尔给克里斯汀寄出第十三封信后就气绝身亡了,这第十三封信内容只有短短的一个公式:r=a(1-sinθ)。公主看到后,立即明白了恋人的意图,她马上着手把方程的图形画出来,原来方程的图形是一颗心的形状。这也就是著名的“心形线”

2103447a6a43b16f56948d066625e09c.png

当然也有人说过这个故事不是真实的,但无论故事的主人公遭遇的真假,心形线确实是存在的,同时笛卡尔也是人类数学史上一颗璀璨的星。在解析几何中我们建立一切方程的基础——坐标系,也正是笛卡尔的杰作。

极坐标转换

但是为何r=a(1-sinθ)被称为心形线呢?或者说怎样建立坐标系才能将这样一个图像绘制出来呢?这就不得不说AP微积分BC中的一个重要内容——极坐标转换。

我们在默认的平面几何表示过程中,经常使用直角坐标系。比如说桌子是一个平面,我们可以在桌角处建立一个直角坐标系(也就是x轴与y轴),此时我们利用x的坐标与y的坐标就可以把桌子上任意一个东西的位置表示出来。

用直角坐标系中的点坐标即可说明物品的位置,直观又方便,但这并不是唯一的方法。极坐标表示形式同样可以表示平面上的任意一点,我们可以在桌子上的中心上建立一个形如八卦阵一样的坐标系,想象我们身处中心处,如果是这样我们要如何能够表达A点的位置呢?

f49353e91f722dcb112ba6476bdfc856.png

如何表达A点的位置

首先借助方向,可以找到A点在60°的方向上,这时候A便在一条从原点出发,与横向成60°夹角的射线上。再次利用距离,A点距离中心的位置,便可以知道A点在具体什么位置。

这就像投篮,要想把球扔进篮筐,我们需要知道朝哪个方向,并且需要知道距离篮筐有多远。利用这样的信息来表达平面上的点,便是极坐标表达形式了。其中距离记作r,角度记作θ。而上面的心形线r=a(1-sinθ),不就正是用这两个参数表达的吗?

e74782ea7b6f6aa0f2f5f68842802600.png

接下来是如何画这个图像,我们动手画一个r=(1-sinθ),极坐标图像的画法和常规描点法画图一样,我们取不同的θ值,便会得到不同的r值。根据 θ与r取值的对应变化过程,会产生这样一个轨迹。

3d8c9f7c70fc340e4db81ac8557f4f8f.gif

最后把轨迹描绘出来,便是心形线了。

8464db3ffec9f2302b8db2916731565c.png

ps:在AP微积分BC考试当中,如果能自己动手画一画极坐标的图像,会令题目变得更加直观,表达式就不再是枯燥的符号了,而且说不准也会是浪漫的形状。

其实心形线只是极坐标系浪漫的一个代表,在极坐标系下,图像通常比直角坐标系圆滑,还有很多的漂亮的曲线可以用极坐标系来表达,比如三叶玫瑰线(2012年的考试中出现了哟)

a5eb0de677650b67d5f15f59d0f4193a.png

又或者是阿基米德螺线,都是比直角坐标更有趣的曲线哟。

bdf36bf728b75df0301f2d2388a97428.png

总结

极坐标作为AP微积分BC考试中的重要知识点总是以大题的形式出现在考试中。总有同学表示对它头疼不已,往往是因为学习的过程并没有体会到它真实的意义。

它可以表示很多无法用直角坐标系进行衡量的曲线,是解析几何的重要工具;同时它的图形又很具魔力,如同上面的阿基米德螺线一般,仿佛能够将视线吸入进去;它颇具难度,也颇具魅力,能帮助我们解决数学难题,同时也能让我们感受到图形的乐趣。

在学习“画圈圈”的过程中,顺便解决掉一个考试难点,也是件不错的事情。

文章作者

20643383278ab3d5ca57604c4a2a2b26.png

TD福利&领取方式

最后是TD送福利时间!为了帮助同学们更好的备考,本次为大家送上的福利是2009-2019年的AP微积分FRQ真题。点击阅读原文,进行领取。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值