掌握protobuf:中文文档教程与实践指南

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:Protocol Buffers(protobuf)是由Google开发的数据序列化协议,能高效存储和传输结构化数据。该文档详细介绍了protobuf的基本概念、工作原理、语法结构、与其他格式的比较、应用场景、工具链以及与gRPC的结合。特别强调了protobuf的优势在于其二进制格式的高效率和紧凑性,并提供了一些使用上的最佳实践。通过本学习文档,开发者可以学会如何创建跨平台、高效的数据交换格式,并提升软件性能与通信效率。 protobuf中文学习文档

1. protobuf数据序列化协议概述

随着软件架构日益复杂化,数据交换成为了系统之间通信的核心。数据序列化协议是实现高效、可靠数据交换的关键技术之一。Protocol Buffers(简称protobuf),是由Google开发的一种轻便高效的结构化数据存储格式,可作为数据交换格式使用。

protobuf设计之初旨在替代传统的XML或JSON格式,以提高网络传输和存储效率。它使用.proto文件声明数据结构,可以生成多种编程语言的数据访问代码,这使得protobuf在多种环境和平台之间共享数据变得非常容易。

作为开发人员,了解protobuf的基本概念和工作原理对于提高数据交换效率和减少系统间的耦合度至关重要。接下来的章节,我们将深入探讨protobuf的工作机制,以及如何在不同的开发场景中有效地使用它。

2. protobuf工作原理详解

2.1 protobuf序列化与反序列化过程

序列化是指将数据结构或对象状态转换为可以存储或传输的格式的过程。在Protocol Buffers(protobuf)中,序列化是将定义在.proto文件中的数据结构转换成二进制形式的过程。反序列化则是执行相反的操作,即将二进制数据重新组装成数据结构。

2.1.1 序列化的机制和步骤

序列化的过程可以概括为以下几个步骤:

  1. 读取.proto文件: 首先,protobuf编译器(protoc)读取用户定义的.proto文件,根据文件中定义的消息类型生成相应编程语言的数据访问类。
  2. 创建序列化器: 对于数据访问类的实例,调用序列化器(由编译器生成的代码)将数据结构中的信息编码成二进制格式。
  3. 写入到目标媒介: 序列化后的数据可以直接写入文件、存储到数据库或者通过网络发送。在实际应用中,这一步骤将取决于数据的使用场景。

一个简单的代码示例展示了protobuf序列化过程:

import com.google.protobuf.Message; // 导入protobuf生成的Message类

// 创建消息实例
MyData message = MyData.newBuilder()
        .setId(1)
        .setName("Example")
        .build();

// 序列化消息
byte[] serializedData = message.toByteArray();

// 将序列化数据写入文件或进行其他处理

上述代码中, MyData 是根据 .proto 文件生成的数据访问类。创建了消息实例后,调用 toByteArray() 方法将其序列化为二进制数据。

2.1.2 反序列化的原理和实现

反序列化的步骤相对简单,主要包括:

  1. 读取二进制数据: 从文件、数据库或网络接收二进制数据。
  2. 创建反序列化器: 使用protobuf生成的数据访问类创建反序列化器。
  3. 反序列化数据: 将二进制数据传递给反序列化器,重建原始的数据结构实例。

反序列化的代码示例:

import com.google.protobuf.Message; // 导入protobuf生成的Message类

// 从数据源读取二进制数据
byte[] serializedData = ... // 从某处获取序列化数据

// 反序列化消息
MyData message = MyData.parseFrom(serializedData);

// 使用反序列化后的消息对象进行进一步操作

通过调用 parseFrom() 方法,可以将二进制数据转换回消息对象,从而恢复其原始状态。

2.2 protobuf的线程安全和性能考量

2.2.1 多线程环境下的protobuf使用

由于protobuf生成的代码本质上是不可变对象,因此在多线程环境下使用protobuf时,不需要考虑对象状态的锁定或同步问题。每个线程可以拥有消息对象的副本,而无需担心数据的一致性问题。下面是一个简单的示例:

// 在多线程环境中创建消息
public void createMessageInMultithread() {
    MyData message = MyData.newBuilder()
            .setId(1)
            .setName("Thread-safe example")
            .build();

    // 多个线程可以安全地处理同一个消息对象
    new Thread(() -> {
        byte[] serializedData = message.toByteArray();
        // 处理序列化数据
    }).start();

    new Thread(() -> {
        MyData deserializedMessage = MyData.parseFrom(serializedData);
        // 处理反序列化消息
    }).start();
}

在上述代码中,每个线程都可以独立地处理消息对象,无需考虑线程安全问题。

2.2.2 序列化速度和内存消耗的权衡

protobuf序列化速度快,且生成的二进制数据紧凑,占用内存少。然而,这种效率是以牺牲可读性为代价的,因为二进制格式并不直观。在处理大数据量时,使用protobuf可以显著减少传输和存储所需的资源。

在性能权衡方面,通常会考虑以下因素:

  • CPU性能: 对于需要频繁序列化和反序列化的应用,CPU开销是必须考虑的。
  • 内存使用: 应用程序如果对内存使用敏感,需要关注序列化后的数据占用的内存大小。
  • 网络带宽: 在网络传输大量数据时,序列化数据的大小直接关联到网络带宽的使用。

在实际应用中,开发者可以根据具体场景来选择是否使用protobuf,或者与其他序列化方法相结合以达到最佳性能。

2.3 protobuf的版本兼容性

2.3.1 不同版本间的兼容策略

随着时间的推移,protobuf协议可能会更新,增加新字段或移除旧字段。为了保持向后兼容性,protobuf设计了一套规则来处理不同版本的协议。

  • 字段编号: 字段编号不应更改,因为它是数据二进制格式的一部分。
  • 字段规则: 字段的规则(required, optional, repeated)不应改变。
  • 字段类型: 字段类型不应更改,如果需要更改类型,应创建一个新字段。
  • 添加字段: 可以添加新的字段,但是新字段应有较高的字段编号,以避免影响旧版本的消息。
2.3.2 数据升级和降级的处理方法

在升级或降级protobuf数据时,必须注意以下几点:

  • 升级: 在升级过程中,需要向旧版本添加新字段,并处理好旧数据的兼容问题。通常需要在代码中增加逻辑来识别和处理旧版本数据。
  • 降级: 如果需要在新版本中处理旧版本数据,通常需要编写代码来跳过新添加的字段。

处理版本兼容性的一个重要工具是 UnknownFieldSet ,它可以用来处理未识别的字段。当反序列化一个新版本创建的消息时,旧版本的protobuf库可以忽略这些新字段。

MyData message = MyData.parseFrom(serializedData);
// 如果message中包含未知字段,则可以使用UnknownFieldSet处理它们
UnknownFieldSet unknownFields = message.getUnknownFields();
if (unknownFields != null && unknownFields.asMap().size() > 0) {
    // 处理未知字段...
}

在代码中正确处理未知字段能够确保应用程序与新旧版本的数据都能保持兼容性。

3. protobuf语法结构细节

3.1 protobuf的消息定义和使用

消息是protobuf中用来描述数据结构的核心组件,类似于编程语言中的结构体或类。一个消息由一个或多个字段组成,每个字段都有自己的数据类型和唯一的字段编号。

3.1.1 消息的定义语法

在protobuf中定义消息首先需要指定使用proto3语法版本,然后通过关键字 message 定义消息类型,并在大括号中定义其字段。字段定义由字段编号、字段类型和字段名称组成。例如:

syntax = "proto3";

message Person {
  string name = 1;
  int32 id = 2;
  string email = 3;
}

字段编号 :是唯一的标识符,用于在二进制格式中识别字段。编号1到15在编码时只需要一个字节,而16到2047则需要两个字节。通常较小的编号用于频繁出现的消息字段。

字段类型 :可以是原生类型,如int32、string等,也可以是复杂的类型,如嵌套的消息类型。

字段名称 :是字段在消息结构中的标识符,用于在生成的代码中引用字段。

3.1.2 消息的嵌套和组合使用

消息可以嵌套定义,形成类似于面向对象编程中的类继承关系。例如:

message Address {
  string street = 1;
  string city = 2;
}

message Person {
  string name = 1;
  int32 id = 2;
  Address address = 3;
}

在这个例子中,Person消息类型嵌套了Address消息类型。此外,protobuf还支持使用 oneof 关键字来组合消息,这种方式可以确保字段中只有一个值被设置。

message SampleMessage {
  oneof test_oneof {
    string name = 4;
    int32 id = 5;
  }
}

在这个 SampleMessage 消息定义中, test_oneof 组中只能设置 name id 中的一个字段。这种机制适用于具有互斥选项的场景。

3.2 protobuf的服务定义和RPC实现

在分布式应用中,远程过程调用(RPC)是实现不同服务间通信的一种常见方法。protobuf与gRPC(Google的RPC框架)紧密集成,允许开发者通过定义服务接口和消息格式来生成客户端和服务器端的代码。

3.2.1 服务定义语法和RPC方法

服务定义语法以 service 关键字开始,然后定义服务名称和方法。每个方法都需要指定请求和响应消息类型。示例如下:

syntax = "proto3";

package helloworld;

// The greeting service definition.
service Greeter {
  // Sends a greeting
  rpc SayHello (HelloRequest) returns (HelloReply) {}
}

// The request message containing the user's name.
message HelloRequest {
  string name = 1;
}

// The response message containing the greetings.
message HelloReply {
  string message = 1;
}

在这个例子中, Greeter 服务定义了一个 SayHello 方法,接受一个 HelloRequest 消息作为请求参数,并返回一个 HelloReply 消息作为响应。

3.2.2 基于protobuf的RPC通信机制

一旦定义了服务和消息格式,使用gRPC框架可以轻松生成客户端和服务器端的存根代码。客户端可以调用服务方法,而服务器端实现这些方法以响应客户端的请求。通信机制背后由HTTP/2提供支持,这使得gRPC能够在同一连接上支持多个并发通信流。

gRPC基于四种不同的RPC类型来处理不同的通信需求: - Unary RPC :最基本的RPC类型,客户端发送一个请求到服务器,然后获取一个响应。 - Server streaming RPC :客户端发送一个请求到服务器,然后获取一个流,允许服务器发送多个消息。 - Client streaming RPC :客户端向服务器发送一个流,发送多个消息,并在结束时获取一个响应。 - Bidirectional streaming RPC :客户端和服务器使用流进行双向通信,双方可以同时发送消息。

3.3 protobuf的枚举和注释使用

枚举和注释是代码可读性和文档化的重要组成部分。protobuf提供枚举类型来表示一组命名的常量,并且允许在消息定义中添加注释来提高代码的可维护性。

3.3.1 枚举类型的定义和作用

枚举类型允许定义一个类型,该类型只能有预定义的一组常量值中的一个。例如:

message SearchRequest {
  string query = 1;
  int32 page_number = 2;
  int32 result_per_page = 3;
  enum Corpus {
    UNIVERSAL = 0;
    WEB = 1;
    IMAGES = 2;
    LOCAL = 3;
    NEWS = 4;
    PRODUCTS = 5;
    VIDEO = 6;
  }
  Corpus corpus = 4;
}

在这个例子中, Corpus 枚举类型可以被用作 SearchRequest 消息的字段,以表示搜索的文档类型。枚举值通常从0开始,因此,在增加新枚举值时要小心,因为中间的数字可能会被预先占用。

3.3.2 注释和文档化的重要性

注释在protobuf消息定义中非常重要,它们不仅提供对消息结构和字段的说明,还能通过protoc编译器被转换为生成代码中的文档字符串。这有助于开发者理解和使用生成的API。例如:

// 通讯录信息
message AddressBook {
  // 通讯录中的人员列表
  repeated Person people = 1;
}

// 人员信息
message Person {
  // 人员的姓名
  string name = 1;
  // 人员的唯一标识
  int32 id = 2;  // Unique ID number for this person.
  // 人员的电子邮件地址
  string email = 3;
}

在上面的代码中,每个消息和字段都包含了注释,这些注释在通过protoc工具生成的客户端代码中将被用作文档字符串。这种文档化的方法可以显著提高代码的可读性和易用性。

protobuf还支持使用注释生成文档工具,如protoc-gen-doc,可以自动生成HTML或其他格式的文档。这种方式使得维护大型消息定义集更为方便。

4. protobuf与XML/JSON格式的对比分析

序列化作为数据交换的基石,在不同的应用场景中扮演着至关重要的角色。本章节将重点探讨protobuf与XML/JSON这两种广为应用的序列化格式之间的对比分析。

4.1 序列化速度和体积比较

序列化速度和生成数据的体积是衡量序列化格式性能的两个重要指标,尤其在大规模数据处理和网络传输时显得尤为重要。

4.1.1 三者在不同场景下的性能比较

在高性能要求的网络通信和数据交换场景中,protobuf展现出明显的优势。由于protobuf是二进制格式,其序列化后的体积通常比XML和JSON更小,序列化和反序列化过程也更为迅速。这一点在数据量大的情况下尤其显著。

XML,作为标记语言,在数据描述的灵活性上有其独到之处,但其基于文本的特性使得其体积较大,解析速度相对较慢。它在需要人类可读性和编辑性的场景中表现更好,如配置文件或文档标记。

JSON格式介于XML和protobuf之间。它相对于XML来说更加紧凑,同时又保留了较好的人类可读性。但在处理复杂数据结构和大量数据时,其性能通常不及protobuf。

4.1.2 应用选择的考量因素

选择序列化格式时,需要根据实际应用场景的需求来权衡。若对性能有严格要求,同时应用场景的数据结构较为固定,则protobuf可能是理想选择。如果数据结构多变,或者需要兼容多种系统和平台,JSON则可能更适合。XML则适用于那些对数据描述的清晰度和扩展性要求较高的情况。

4.2 语法复杂度和易用性对比

语法结构的直观性直接影响到开发者的使用体验和学习曲线。不同的序列化格式在语法设计上存在明显差异。

4.2.1 语法结构的直观性和学习曲线

protobuf的设计哲学是简单和高效,它采用基于声明的数据结构定义方式,这使得开发者可以快速上手。同时,protobuf通过.proto文件描述数据结构,其语法比较简洁,但也有一定的学习成本。

相比之下,XML和JSON的语法更为直观,开发者可以很容易地通过阅读和编写来理解其结构。但是,XML的标签嵌套可能导致阅读困难,并且对缩进和格式要求严格,容易出错。

4.2.2 在实际开发中的易用性比较

JSON在Web开发中应用广泛,其简洁的语法和易读性使得它在前后端数据交换中非常受欢迎。由于现代编程语言通常都提供了处理JSON的库,因此在实际开发中使用JSON非常方便。

protobuf虽然在易用性上稍逊于JSON,但得益于其高效率和紧凑的数据结构,它在需要频繁进行网络通信的应用中有着不可替代的作用。而且,随着各种编程语言对protobuf支持的完善,其易用性正在不断提高。

4.3 应用场景和生态支持分析

不同的序列化技术在特定的应用场景下有其独特的优势和用途,而生态支持则是决定技术采用和发展的一个重要因素。

4.3.1 各自的应用领域和优势

protobuf在分布式系统、移动应用和游戏开发等领域拥有明显的优势,尤其在Google内部得到了广泛的应用。它的高效性能和跨平台支持是其受到青睐的主要原因。

XML在企业应用集成(EAI)、系统配置管理以及文档存储方面有悠久的历史和深厚的基础。其标准化和可扩展性是XML仍被广泛使用的关键所在。

JSON则凭借其在Web技术中的广泛集成,成为RESTful API设计的首选数据交换格式。由于其与JavaScript的天然联系,JSON在前端开发中有着得天独厚的优势。

4.3.2 社区和企业支持的现状

protobuf由Google主导开发和维护,得到了大型企业的支持,例如Facebook和Twitter等,在开发工具和生态系统方面持续进步。

XML由于历史悠久,其相关的开发工具、库和标准都非常成熟,拥有稳定的社区支持。

JSON得益于其轻量级和易于实现的特性,拥有了一个非常活跃的社区和众多开源项目。在各种现代编程语言中,JSON的处理库已经成为了标准配置。

在进行技术选型时,开发者和企业应根据具体的应用场景和生态支持情况,仔细考量不同序列化格式的优缺点,做出最适合自己的选择。

5. protobuf应用案例

5.1 跨平台通信中的protobuf应用

5.1.1 跨平台通信的需求和挑战

跨平台通信是分布式系统设计中的一个常见需求,旨在实现不同系统、不同平台和不同语言之间的数据交换。在构建这样的通信系统时,面临的挑战主要集中在保持通信效率和兼容性上。传统的通信协议如XML和JSON虽然在跨平台兼容性上表现良好,但其庞大的数据体积和相对较慢的序列化/反序列化速度对于性能要求较高的场景来说,往往不够理想。

在跨平台通信中,数据体积和速度成为重要的考量因素。因为数据在网络中传输需要消耗带宽,同时考虑到延迟和吞吐量,减少数据体积能够显著提高通信效率。这要求所选的通信协议能够提供紧凑的数据表示以及高效的序列化和反序列化机制。

5.1.2 protobuf如何简化通信过程

Protocol Buffers(protobuf)通过其二进制格式简化了跨平台通信的过程。由于其高效的编码方式,能够生成更小的数据体积,这对于带宽有限的网络环境尤为关键。同时,protobuf的二进制格式减少了数据解析时的CPU消耗,因为它避免了文本格式处理时的逐字符解析,而是采用基于字节块的读取和写入。

protobuf的跨平台优势还体现在其生成的代码库和语言无关的特性上。使用protobuf定义的数据结构可以通过protobuf编译器(protoc)生成多种编程语言的代码,从而实现了跨语言的数据通信。此外,protobuf的IDL(接口描述语言)为数据结构的定义提供了一个统一的方式,这减少了在不同平台间维护多种数据格式定义的工作量。

// 示例:定义一个简单的用户消息
message User {
  required int32 id = 1;
  required string name = 2;
  optional string email = 3;
}

以上面的protobuf定义为例,我们可以使用protoc工具生成对应编程语言的类,并通过这个类实现跨平台的通信。无论是在Java、C++还是Python环境中,都能以一致的方式处理用户消息。

5.2 数据库存储中的protobuf应用

5.2.1 数据库存储的常见问题

数据库存储是数据持久化的核心环节,面对庞大的数据量和高频率的读写操作,存储效率和性能至关重要。在数据库存储中,常见的问题包括数据模型的映射复杂性、序列化/反序列化效率低下和数据体积过大等。传统的关系型数据库在存储结构化数据时表现良好,但在处理非结构化或半结构化数据时,可能需要进行额外的序列化和反序列化操作。

此外,数据在数据库和应用之间的传输也存在性能瓶颈。特别是当应用需要频繁读写数据库时,如何减少序列化和反序列化的开销、如何减少网络传输的数据量,成为优化数据库存储效率的关键。

5.2.2 protobuf优化存储结构的方法

使用protobuf可以优化数据库存储结构,提高存储效率。protobuf的紧凑二进制格式使得数据在写入数据库时占用更少的空间,从而减少了磁盘I/O操作和存储空间的需求。对于读取操作,protobuf的反序列化过程高效且快速,这有助于提升数据库的查询效率。

protobuf的数据定义清晰且类型安全,这使得在数据库设计时可以更加精确地定义数据模式,减少因类型不匹配或格式错误导致的问题。此外,protobuf支持数据版本管理,当数据模式发生变化时,可以较容易地实现数据的向前和向后兼容。

// 示例:定义一个用户数据模型
message User {
  int32 id = 1;
  string name = 2;
  string email = 3;
}

当我们将protobuf格式的数据写入数据库时,由于其紧凑的二进制表示,我们能够有效地减少存储空间的使用,并且提高数据访问速度。在读取数据时,数据库与应用之间的传输效率也得到了提升,因为传输的数据量更少,解析数据的速度更快。

5.3 API设计中的protobuf应用

5.3.1 API设计的原则和挑战

API(应用程序编程接口)设计是构建现代网络服务的基础。优秀的API设计需要遵循RESTful原则,保证简洁性、一致性和可扩展性。在设计API时面临的挑战包括维护API的版本兼容性、处理API的负载均衡和流量控制、以及提供安全和高性能的数据交换机制。

随着Web服务的普及和移动应用的发展,API的性能和安全性成为了衡量其质量的重要标准。因此,选择适当的序列化和传输协议对于构建高效和安全的API至关重要。

5.3.2 protobuf在API设计中的优势

protobuf在API设计中的主要优势体现在其高效的序列化性能和紧凑的数据表示上。相较于文本格式的通信协议,protobuf能够提供更小的数据体积和更快的序列化/反序列化速度,这对于提升API的性能和响应速度具有明显的优势。

此外,protobuf的数据定义机制也使得API的数据模型能够保持良好的一致性。通过protobuf的schema可以明确定义数据的结构和字段类型,这为API的客户端和服务端提供了清晰的合约,减少了数据解析的歧义。

// 示例:定义一个API响应消息
message ApiResponse {
  enum StatusCode {
    OK = 0;
    ERROR = 1;
  }
  required StatusCode status = 1;
  optional string message = 2;
  optional User user = 3;
}

使用protobuf定义的API响应消息具有结构化和类型安全的特点。在实际API设计中,这允许开发者精确控制数据的交换格式,并在客户端和服务端之间建立严格的合约,从而提高API的可靠性和维护性。

小结

在本章节中,我们深入探讨了protobuf在跨平台通信、数据库存储和API设计三个关键领域的应用案例。通过分析其在解决跨平台通信需求、优化数据库存储结构和提升API设计质量中的具体作用和优势,我们可以清晰地看到protobuf作为一种二进制序列化协议在多个IT场景中的强大实用价值。接下来,我们将进一步深入了解protobuf工具链及其在实际开发中的应用方法,以便读者能够将这些知识运用到自己的项目实践中。

6. protobuf工具链及其实用方法

6.1 protobuf编译器(protoc)的使用

Protobuf编译器(protoc)是处理.proto文件的核心工具,负责将定义在.proto文件中的结构编译成特定语言的源代码。

6.1.1 protoc的基本用法和参数介绍

使用protoc时,需要先指定输入文件,然后可以使用特定的插件生成不同语言的代码。以下是一个基本的protoc命令示例:

protoc --proto_path=IMPORT_PATH --cpp_out=DST_DIR --java_out=DST_DIR --python_out=DST_DIR path/to/file.proto

这里的参数解释如下: - --proto_path -I :指定.proto文件所在的目录。 - --cpp_out --java_out --python_out :分别指定生成C++、Java、Python代码的目标目录。 - path/to/file.proto :指定要编译的.proto文件。

Protoc还支持多种参数,例如 -o 用于指定输出文件名, --plugin 用于指定要运行的插件等。

6.1.2 生成不同编程语言代码的案例

下面展示如何使用protoc为不同编程语言生成代码:

生成C++代码
protoc -I/usr/local/include -I. --cpp_out=. person.proto

假设我们的环境变量 $PATH 已经包含了protoc的位置,上面命令会读取 person.proto 文件,并在当前目录生成C++源文件和头文件。

生成Java代码
protoc -I/usr/local/include -I. --java_out=. person.proto

这条命令会在当前目录生成Person类的Java源文件,可以被导入到Java项目中。

生成Python代码
protoc -I/usr/local/include -I. --python_out=. person.proto

执行完毕后,会生成Python模块文件,可以直接导入到Python代码中。

6.2 protobuf插件和扩展工具

随着protobuf的普及,许多第三方工具和插件应运而生,它们可以提高开发效率和优化工作流程。

6.2.1 常见的第三方protoc插件

  • protolint :用于检查.proto文件中的格式和风格错误。
  • prototool :一个更高级别的工具,支持代码生成、格式化和验证。
  • protoc-gen-validate (PGV) :提供额外的验证规则,增强了protoc的验证能力。

6.2.2 插件在提升开发效率中的作用

这些插件通常通过自动化的代码生成、验证规则的应用、以及格式的规范来减少手动操作。例如,使用protolint可以确保所有团队成员遵守相同的编码标准,而prototool则提供了一站式的命令行体验,覆盖了从代码生成到验证的全流程。

6.3 protobuf与其他技术栈的集成

由于其高效的序列化能力和跨语言的兼容性,protobuf逐渐成为许多其他技术栈的一部分。

6.3.1 protobuf与容器技术的结合

在使用Kubernetes这类容器编排技术时,可以将.proto文件打包成Docker镜像的一部分。这样一来,服务在启动时,可以预先加载所需的.proto文件,并使用protoc工具动态生成所需语言的代码,从而加速服务启动。

6.3.2 protobuf在微服务架构中的运用

在微服务架构中,服务间的通信效率至关重要。protobuf由于其较小的数据体积和快速的序列化速度,非常适合作为消息交换的格式。通过定义清晰的.proto文件,服务间的通信可以非常灵活,同时保证了高效和可扩展性。例如,可以在开发gRPC服务时,使用protobuf定义消息和服务接口,然后使用protoc生成服务端和客户端的代码,极大地简化了微服务间的通信过程。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:Protocol Buffers(protobuf)是由Google开发的数据序列化协议,能高效存储和传输结构化数据。该文档详细介绍了protobuf的基本概念、工作原理、语法结构、与其他格式的比较、应用场景、工具链以及与gRPC的结合。特别强调了protobuf的优势在于其二进制格式的高效率和紧凑性,并提供了一些使用上的最佳实践。通过本学习文档,开发者可以学会如何创建跨平台、高效的数据交换格式,并提升软件性能与通信效率。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值