向量数量积公式_向量的数量积公式大全

本文详述了平面向量的数量积概念、公式、性质及其应用,包括点乘、叉乘以及它们在几何和物理中的意义。内容涵盖向量的夹角、模长、垂直条件、平行四边形面积和三维空间中的混合积。还提供了高考数学复习的要点,包括向量数量积的坐标表示和练习题,帮助考生巩固理解。
部署运行你感兴趣的模型镜像

学习数学需要讲究方法和技巧,更要学会对知识点进行归纳整理。下面是小编为大家整理的高二数学平面向量的数量积知识点,希望对大家有所帮助!高二数学平面向量的数量积知识点总结1.平面向量的数量积平面向量数量积的定义已知两个非零向量a和b,它们的夹角为θ,把数量|a||b|cosθ叫做a和b的数量积(或内积),记作a·b.即a&m...

积化和差,指初等数学三角函数部分的一组恒等式。可以通过展开角的和差恒等式的手段来证明。无论乘积项中的三角函数是否同名,化为和差形式时,都应是同名三角函数的和差。公式sinαsinβ=-[1][cos(α+β)-cos(α-β)]/2【注意等式右边前端的负号】cosαcosβ=[c...

导语:高考临近,考生们都进入了紧张的最后冲刺阶段,高考数学是一科很容易拉开分数的科目,无论是文科生还是理科生,都要重视数学在高考中的重要性。下面小编给大家推荐一个高考数学复习的教程视频,欢迎大家进行学习观看。更多的学习视频。尽在。...

向量的点乘a*b公式:a*b=|a|*|b|*sinθ,sin是a,b的夹角,取值[0,π]。向量积|c|=|a×b|=|a||b|sin。点乘又叫向量的内积、数量积,是一个向量和它在另一个向量上的投影的长度的乘积;是标量。向量的乘法有两种,分别成为内积和外积。内积也称数量积。因为其结果为一个数(标量)。向量a,b的内积为|a|*|b|cos,其中&lt...

向量的数量积:a*b=|a||b|cosθ,a,b表示向量,θ表示向量a,b共起点时的夹角,很明显向量的数量积表示数,不是向量。在数学中,向量指具有大小和方向的量。向量数量积的基本性质设ab都是非零向量θ是a与b的夹角则①cosθ=a·b/|a||b|②当a与b同向时a·b=|a||b|当a与b反向时a·b=-|a||b|③|a·b|≤|a||b|④a⊥b=a·b=0适用在平面内的两直线几何意...

向量a乘以向量b=(向量a得模长)乘以(向量b的模长)乘以cosα[α为2个向量的夹角];向量a(x1,y1)向量b(x2,y2),向量a乘以向量b=(x1*x2,y1*y2)。A向量乘B向量等于什么点乘向量A=(x1,y1)向量B=(x2,y2)向量A·向量B=|向量A||向量B|cosu=x1x2+y1y2=数值u为向量A、向量B之间夹角。叉乘向量A×向量B=(x1y2i,x2y2j)=向量向...

向量垂直公式:x1*x2+y1*y2=0和|A|*|B|*cos(A与B的夹角)=0。垂直公式a,b是两个向量a=(a1,a2)b=(b1,b2)a//b:a1/b1=a2/b2或a1b1=a2b2或a=λb,λ是一个常数a垂直b:a1b1+a2b2=0证明:①几何角度:向量A(x1,y1),长度L1=√(x12+y12)向量B(x2,y2),长度L2=√(x22+y22)(x1,y...

向量积的长度|a×b|可以解释成这两个叉乘向量a,b共起点时,所构成平行四边形的面积。据此有:混合积[abc]=(a×b)·c可以得到以a,b,c为棱的平行六面体的体积。向量积向量积,数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。其应用也十分广泛,通常应用于物理学光学和计算机图形学...

平面向量数量积教学要求学生掌握平面向量数量积的概念、几何意义、性质、运算律及坐标表示,分享了平面向量数量积的练习题,欢迎借鉴!一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)1.设i,j是互相垂直的单位向量,向量a=(m+1)i-3j,b=i+(m-1)j,(a+b)⊥(a-b),则实数m的值为( )A.-2 &...

平面向量数量积教学要求学生掌握平面向量数量积的概念、几何意义、性质、运算律及坐标表示,分享了平面向量数量积的练习题,欢迎借鉴!一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)1.设i,j是互相垂直的单位向量,向量a=(m+1)i-3j,b=i+(m-1)j,(a+b)⊥(a-b),则实数m的值为( )A.-2 &...

您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

<think> 嗯,用户这次聚焦在Cesium中单位向量的计算和使用方法,看来ta正在研究3D空间中的向量操作。从引用内容看,用户已经接触到单位向量在八面体映射、角度计算、坐标变换等场景的应用,但需要系统性的梳理。 注意到用户提供的引用[1]到[5]都是关键技术片段:引用[1]展示八面体压缩时用L1范数归一化处理三维向量;引用[2]的方位角计算通过Cartesian3.normalize()得到方向向量;引用[4]提到地表法向量本质也是单位向量;引用[5]的垂足计算则演示了单位向量在几何运算中的桥梁作用。 用户可能正在开发与空间方向相关的功能,比如物体移动或视角控制。ta特意强调“计算和使用”,说明需要理论结合实践的指导。深层需求可能是想理解Cesium向量操作的数学原理,避免盲目调用API。 需要重点解析三个维度:基础概念(单位向量定义)、核心计算方法(含代码示例)、典型应用场景。特别要注意引用[4]揭示的底层机制——Cesium很多几何运算依赖单位向量构建局部坐标系,这可能是用户没明说但实际需要的知识。 数学表达要严格遵循系统指令:三维向量$ \vec{v} = (x,y,z) $的归一化公式必须用$ \hat{v} = \frac{\vec{v}}{\|\vec{v}\|} $格式,代码块则展示Cartesian3.normalize()的实际调用。用户提供的代码片段里有些特殊字符(如<)需要修正为标准符号。 相关问题设计需承接用户的研究方向:八面体映射误差分析(引用[1]延伸)、局部坐标系构建细节(引用[4]深化)、运动控制实现(引用[3]关联)都是合理延伸点。要避免提出与用户当前上下文无关的问题。 </think> 在Cesium中,**单位向量**(模长为1的向量)是空间计算的核心基础,主要用于方向表示、坐标转换和几何运算。以下是其核心计算方法和典型应用场景: --- ### 一、单位向量的计算方法 #### 1. **归一化(Normalization)** 将任意向量转换为单位向量的核心操作: ```javascript // 原始向量 const rawVector = new Cesium.Cartesian3(x, y, z); // 归一化为单位向量 const unitVector = Cesium.Cartesian3.normalize( rawVector, new Cesium.Cartesian3() ); ``` **数学原理**: 若原始向量为 $\vec{v} = (x,y,z)$,其单位向量为: $$ \hat{v} = \frac{\vec{v}}{\|\vec{v}\|} = \left( \frac{x}{\sqrt{x^2+y^2+z^2}}, \frac{y}{\sqrt{x^2+y^2+z^2}}, \frac{z}{\sqrt{x^2+y^2+z^2}} \right) $$ #### 2. **直接生成单位向量** 通过已知方向直接构造单位向量(无需归一化): ```javascript // 示例:生成Z轴正方向的单位向量 const unitZ = new Cesium.Cartesian3(0, 0, 1); ``` --- ### 二、关键应用场景 #### 1. **角度计算**(引用[2]) 通过点积计算向量夹角: ```javascript const vectorA = Cesium.Cartesian3.normalize(/*...*/); const vectorB = Cesium.Cartesian3.normalize(/*...*/); // 余弦值 = 单位向量的点积 const cosTheta = Cesium.Cartesian3.dot(vectorA, vectorB); const radians = Math.acos(cosTheta); // 弧度制夹角 ``` > **原理**:$\cos \theta = \vec{a} \cdot \vec{b}$,要求 $\vec{a}$ 和 $\vec{b}$ 均为单位向量[^2]。 #### 2. **坐标系转换**(引用[4]) 构建局部旋转矩阵时依赖单位向量: ```javascript // 获取地表法向量(垂直于椭球面的单位向量) const surfaceNormal = Cesium.Ellipsoid.WGS84.geodeticSurfaceNormal( position, new Cesium.Cartesian3() ); ``` > 此单位向量作为局部坐标系的Z轴,用于构造旋转矩阵[^4]。 #### 3. **几何投影**(引用[5]) 计算点到直线的垂足: ```javascript computeCZ: function (p1, p2, p3) { const dir = Cesium.Cartesian3.normalize( Cesium.Cartesian3.subtract(p2, p1, new Cesium.Cartesian3()), new Cesium.Cartesian3() ); // 投影长度 = (p3-p1)·单位方向向量 const scalar = Cesium.Cartesian3.dot( Cesium.Cartesian3.subtract(p3, p1, new Cesium.Cartesian3()), dir ); // 垂足坐标 = p1 + scalar * dir return Cesium.Cartesian3.add( p1, Cesium.Cartesian3.multiplyByScalar(dir, scalar, new Cesium.Cartesian3()), new Cesium.Cartesian3() ); } ``` > **关键步骤**:方向向量归一化后简化投影计算[^5]。 #### 4. **空间压缩优化**(引用[1]) 将三维单位向量映射到二维平面: ```javascript // 伪代码:八面体映射 const octEncode = (normal) => { const absSum = Math.abs(normal.x) + Math.abs(normal.y) + Math.abs(normal.z); const normalized = Cesium.Cartesian3.divideByScalar(normal, absSum, new Cesium.Cartesian3()); return new Cesium.Cartesian2( normalized.x, normalized.y * (normalized.z > 0 ? 1 : -1) // 折叠负Z空间 ); }; ``` > **核心思想**:通过$L_1$范数归一化+负Z折叠,实现均匀误差分布[^1]。 --- ### 三、注意事项 1. **性能优化**:避免重复归一化,对频繁使用的单位向量缓存结果。 2. **精度问题**:接近零的向量归一化可能导致数值不稳定,需前置检查: ```javascript if (Cesium.Cartesian3.magnitudeSquared(rawVector) < 1e-12) { // 处理零向量异常 } ``` ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值