强化学习中的环境观测与智能体建模

强化学习中的环境观测与智能体建模

强化学习是机器学习领域的一个重要分支,它允许智能体在与环境交互的过程中学习如何作出决策。本文将探讨强化学习中的两个重要概念:环境的可观测性与智能体的建模。

背景简介

在强化学习中,环境的可观测性是指智能体能否观察到环境的所有状态。根据这一特性,我们可以将环境分为完全可观测环境和部分可观测环境。智能体在完全可观测环境中可以清晰地看到环境的所有状态,而在部分可观测环境中,智能体的观测只是环境状态的一部分。

完全可观测环境与MDP

当环境是完全可观测的,我们可以将强化学习问题建模为一个马尔可夫决策过程(MDP)。MDP由状态空间、动作空间、状态转移概率、奖励函数和折扣因子五部分组成。在这种情况下,智能体能够根据当前状态和策略,预测未来的状态和奖励。

部分可观测环境与POMDP

在部分可观测环境中,智能体无法观察到环境的所有状态,因此,问题被建模为部分可观测马尔可夫决策过程(POMDP)。POMDP在MDP的基础上引入了观测概率,并且通常使用七元组来描述:状态空间、隐变量、动作空间、状态转移概率、奖励函数、观测概率和观测空间。

强化学习智能体的组成部分

强化学习智能体由三个核心组成部分构成:策略、价值函数和模型。下面将详细介绍这些组成部分。

策略

策略决定了智能体的动作。它可以是随机性的,也可以是确定性的。随机性策略通过概率分布来决定动作,而确定性策略直接决定动作。随机性策略由于其探索性,通常更适用于学习过程。

价值函数

价值函数用于评估状态的优劣。它预测未来奖励的期望,并对状态的好坏进行评估。价值函数有两种形式:状态价值函数和Q函数。状态价值函数仅考虑状态,而Q函数考虑状态和动作的组合。

模型

模型是指智能体对环境状态的理解。它由状态转移概率和奖励函数组成,决定了环境的运行方式。有模型强化学习智能体通过学习模型来预测状态的转移和奖励。

强化学习智能体的类型

智能体根据学习的方式和是否建模环境,可以分为不同的类型。

基于价值与基于策略的智能体

基于价值的智能体学习价值函数,并隐式地确定策略。基于策略的智能体则直接学习策略函数。演员-评论员智能体结合了两者,利用价值函数和策略函数共同进行决策。

有模型与免模型智能体

有模型智能体学习环境模型,并在虚拟世界中进行训练。免模型智能体直接与真实环境交互,通过样本学习最优策略。免模型强化学习由于其实用性和数据驱动的特性,在大多数深度强化学习方法中得到了应用。

学习与规划

学习和规划是强化学习的两个基本问题。在学习过程中,智能体通过与环境的交互来逐渐改进策略。而在规划过程中,环境是已知的,智能体可以计算出最优策略而无需实际与环境交互。

总结与启发

通过深入理解强化学习中的环境观测和智能体建模,我们可以更好地设计和实现智能体。完全可观测环境与MDP适用于环境状态完全可知的情况,而部分可观测环境与POMDP则提供了处理不完整信息的方法。智能体的策略、价值函数和模型是其行动和学习的基石。有模型与免模型的学习方法各有优劣,选择合适的方法可以帮助我们在不同环境下实现智能体的学习和规划。

文章通过分析强化学习中的关键概念,为读者提供了一个全面的视角来理解这一领域。通过学习与规划的视角,我们可以更好地理解智能体如何在不同环境中进行决策。了解这些基础知识,将有助于我们设计出更加高效和智能的强化学习系统。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值