gmm聚类python_EM算法之GMM聚类 - osc_f48vvrg3的个人空间 - OSCHINA - 中文开源技术交流社区...

bcf76abef0ccaf91849d7a274d89434d.png

d36c010199564a18c9bd34df2b4d6dc6.png

b793e397b7028c138da730688db9fb3f.png

以下为GMM聚类程序

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

data=pd.read_csv('Fremont.csv',index_col='Date',parse_dates=True)

print(data.head())

data.plot()

plt.show()

data.resample('w').sum().plot()#以周为时间统计

data.resample('D').sum().rolling(365).sum().plot()

plt.show()

##按照时间为统计

data.groupby(data.index.time).mean().plot()

plt.xticks(rotation=45)

plt.show()

data.columns=['West','East']

data['Total']=data['West']+data['East']

pivoted=data.pivot_table('Total',index=data.index.time,columns=data.index.date)

pivoted.iloc[:5,:5]

print(pivoted.iloc[:5,:5])

pivoted.plot(legend=False,alpha=0.01)

plt.xticks(rotation=45)

plt.show()

print(pivoted.shape)

X=pivoted.fillna(0).T.values

print(X.shape)

from sklearn.decomposition import PCA

X2 =PCA(2).fit_transform(X)

print(X2.shape)

plt.scatter(X2[:,0],X2[:,1])

plt.show()

from sklearn.mixture import GaussianMixture

gmm =GaussianMixture (2)

gmm.fit(X)

# labels= gmm.predict_proba(X)

# print(labels)

labels=gmm.predict(X)

print(labels)

plt.scatter(X2[:,0],X2[:,1],c=labels,cmap='rainbow')

plt.show()

from sklearn.datasets.samples_generator import make_blobs

X,y_true =make_blobs(n_samples=800,centers=4,random_state=11)

plt.scatter(X[:,0],X[:,1])

plt.show()

from sklearn.cluster import KMeans

KMeans =KMeans(n_clusters=4)

KMeans.fit(X)

y_Kmeans=KMeans.predict(X)

plt.scatter(X[:,0],X[:,1],c=y_Kmeans,s=50,cmap='viridis')

centers=KMeans.cluster_centers_

plt.show()

from sklearn.mixture import GaussianMixture

gmm =GaussianMixture(n_components=4).fit(X)

labels=gmm.predict(X)

print(labels)

plt.scatter(X[:,0],X[:,1],c=labels,s=40,cmap='viridis')

plt.show()

运行结果

0df2b74e125ae01bdcec4df92a055f13.png

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
GMM(Gaussian Mixture Model)是一种基于高斯分布的概率模型,常用于聚类或密度估计。EM(Expectation-Maximization)算法是一种迭代算法,通常用于GMM的参数估计。下面是使用Python实现GMM和EM算法的示例代码: ``` import numpy as np from sklearn.mixture import GaussianMixture # 生成随机数据 np.random.seed(0) X = np.concatenate([np.random.randn(100, 2) + [2, 2], np.random.randn(100, 2) + [-2, -2], np.random.randn(100, 2) + [2, -2]]) # 初始化GMM模型 gmm = GaussianMixture(n_components=3, covariance_type='full') # 训练模型 gmm.fit(X) # 打印聚类结果 print(gmm.predict(X)) # 打印GMM模型参数 print('Means:') print(gmm.means_) print('Covariances:') print(gmm.covariances_) print('Weights:') print(gmm.weights_) ``` 这段代码使用了`sklearn.mixture.GaussianMixture`类,它可以方便地进行GMM模型的训练和参数估计。其中,`n_components`参数指定了聚类个数,`covariance_type`参数指定了协方差矩阵类型。在上面的例子中,我们使用了`'full'`类型,即完整协方差矩阵。 下面是使用Python实现EM算法的示例代码: ``` import numpy as np # 初始化参数 np.random.seed(0) K = 3 N = 300 mu = np.array([[-2, 2], [2, 2], [0, -2]]) sigma = np.array([[[1, 0], [0, 1]], [[1, 0.5], [0.5, 1]], [[0.5, 0], [0, 0.5]]]) alpha = np.ones(K) / K x = np.zeros((N, 2)) for i in range(K): x[i * 100:(i + 1) * 100, :] = np.random.multivariate_normal(mu[i, :], sigma[i, :, :], 100) # EM算法迭代 for t in range(10): # E步:计算后验概率 gamma = np.zeros((N, K)) for k in range(K): gamma[:, k] = alpha[k] * np.exp(-0.5 * np.sum((x - mu[k, :]) ** 2 / sigma[k, :, :], axis=1)) / np.sqrt(np.linalg.det(sigma[k, :, :])) gamma /= np.sum(gamma, axis=1, keepdims=True) # M步:更新模型参数 for k in range(K): Nk = np.sum(gamma[:, k]) mu[k, :] = np.sum(gamma[:, k].reshape(-1, 1) * x, axis=0) / Nk sigma[k, :, :] = np.sum(gamma[:, k].reshape(-1, 1, 1) * np.matmul((x - mu[k, :]).reshape(-1, 2, 1), (x - mu[k, :]).reshape(-1, 1, 2)), axis=0) / Nk alpha[k] = Nk / N # 打印模型参数 print('Iteration', t + 1) print('Means:') print(mu) print('Covariances:') print(sigma) print('Weights:') print(alpha) ``` 这段代码使用了EM算法来估计GMM模型的参数。其中,`mu`、`sigma`和`alpha`分别表示高斯分布的均值、协方差矩阵和权重,`gamma`表示后验概率。在每一轮迭代中,首先计算后验概率,然后根据后验概率更新模型参数。迭代结束后,打印出模型参数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值