构建AI驱动的人工鼻子:气味识别技术
背景简介
随着人工智能(AI)技术的快速发展,越来越多的AI应用开始进入我们的日常生活。在本书的第六章中,我们接触到了一个非常有趣的项目——使用Wio终端和Grove-多通道气体传感器v2制作一个人工鼻子。这个项目不仅对学习TinyML(Tiny Machine Learning)技术具有指导意义,还让我们对AI在嗅觉领域的应用有了新的认识。
项目概述
项目的核心目标是构建一个AI驱动的人工鼻子,它能够通过气体传感器区分不同的气味,如可乐、酒精和空气。本项目由Benjamin Cabé的“人造鼻子”项目获得灵感,作者通过亲身体验改良面包食谱的过程,形象地描述了如何利用AI技术来优化日常生活中的问题。
理论基础
气体传感器通过在硅基底上制造微热板,并使用金属氧化物半导体材料,能够检测特定气体的存在。当气体传感器暴露于特定气体环境时,其导电性会随气体浓度的变化而变化,这一变化通过电路转换为可测量的信号输出。
材料准备
制作项目需要的硬件包括Wio终端和Grove-多通道气体传感器v2。传感器拥有4个测量单元,能同时获取四种气体数据,并且能够识别包括二氧化碳、二氧化氮、乙醇和挥发性有机化合物等多种气体。
实践操作
项目的操作步骤分为四个部分:创建和选择模型、数据获取、训练和部署、编程。每一步都详细阐述了具体操作方法,为读者提供了实操指南。
创建和选择模型
首先,创建一个专门用于“气味识别”的模型,并在Codecraft环境中进行数据采集。
数据获取
需要预热传感器以达到内部化学平衡,然后开始收集数据。收集到的数据将用于训练模型。
训练和部署
在这一部分,设置神经网络的大小和参数,如学习率和训练周期数,并开始训练。训练完成后,观察模型的性能,并将表现最佳的模型进行部署。
编程
通过编程接口,使用部署好的模型,并将程序上传到Wio终端。最后,测试模型是否能准确识别不同饮料的气味。
总结与启发
本项目不仅展示了AI在气味识别领域的应用潜力,还让我们了解到数据采集、模型训练以及超参数调整的重要性。通过动手实践,我们学习到了如何处理真实世界的问题,利用AI技术来优化解决方案。这个项目为我们打开了AI应用的另一个窗口,激发了我们探索AI在日常生活中更多可能性的兴趣。
参考资料
- Wio Terminal for Seeed Wiki: https://wiki.seeedstudio.com/Wio-Terminal-Getting-Started/
- Codecraft: https://ide.tinkergen.com/
- 购买链接: https://www.seeedstudio.com/Wio-Terminal-p-4509.html
- 课程开发者: Huiyin Lai, Hao Yuan等
- TinyML Course for Codecraft
通过本项目的实践,我们可以更深入地理解AI技术,并将其应用于生活的各个方面。这不仅是一个学习的机会,也是一个创新的起点。