r语言的MASS包干什么的_R语言常用包汇总

本文详细介绍了R语言的MASS包及其在多元统计分析中的应用,包括数据可视化、假设检验、多元分布、线性模型等多个方面。此外,还汇总了R语言中其他常用的数据分析包,如hmisc、cluster、kernlab等,涵盖了从数据预处理到模型选择的全过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转载于:https://blog.csdn.net/sinat_26917383/article/details/50651464?locationNum=2&fps=1

一、一些函数包大汇总

转载于:http://www.dataguru.cn/thread-116761-1-1.html

时间上有点过期,下面的资料供大家参考

基本的R包已经实现了传统多元统计的很多功能,然而CRNA的许多其它包提供了更深入的多元统计方法,下面要综述的包主要分为以下几个部分:

1) 多元数据可视化(Visualising multivariate data)

绘图方法

基本画图函数(如:pairs()、coplot())和 lattice包里的画图函数(xyplot()、splom())可以画成对列表的二维散点图,3维密度图。car包里的scatterplot.matrix()函数提供更强大的二维散点图的画法。

cwhmisc包集合里的cwhplot包的pltSplomT()函数类似pair()画散点图矩阵,而且可以在对角位置画柱状图或密度估计图。

除此之外,scatterplot3d包可画3维的散点图,aplpack包里bagplot()可画二变量的boxplot,spin3R()可画可旋转的三维点图。misc3d包有可视化密度的函数。

YaleToolkit包提供许多多元数据可视化技术,agsemisc也是这样。

更特殊的多元图包括:aplpack包里的faces()可画Chernoff’s face;MASS包里的parcoord()可画平行坐标图(矩阵的每一行画一条线,横轴表示矩阵的每列);

graphics包里的stars()可画多元数据的星状图(矩阵的每一行用一个星状图表示)。ade4包里的mstree()和vegan包里的spantree()可画最小生成树。

calibrate包支持双变量图和散点图,chplot包可画convex hull图。

geometry包提供了和qhull库的接口,由convexhulln()可给出相应点的索引。

ellipse包可画椭圆,也可以用plotcorr()可视化相关矩阵。denpro包为多元可视化提供水平集树形结构(level set trees)。graphics包里的mosaicplot()和vcd包里的mosaic()函数画马赛克图(mosaic plot)。

gclus包提供了针对聚类的散点图和平行坐标图。

rggobi包和DescribeDisplay包是GGobi的接口,DescribeDisplay的图可达到出版质量的要求;

xgobi包是XGobi和XGvis的接口,可实现动态交互的图。

iplots包提供强大的动态交互图,尤其是平行坐标图和马赛克图。

seriation包提供seriation方法,能重新排列矩阵和系统树。

数据预处理

AIS包提供多元数据的初步描述函数。

Hmisc包里的summarize()和summary.formula()辅助描述数据,varclus()函数可做聚类,而dataRep()和find.matches()找给定数据集的典型数据和匹配数据。

KnnFinder包里的nn()函数用kd-tree找相似变量的个数。

dprep包为分类提供数据预处理和可视化函数,如:检查变量冗余性、标准化。

base包里的dist()和cluster包里的daisy()函数提供距离计算函数;

proxy包提供更多的距离测度,包括矩阵间的距离。simba包处理已有数据和缺失数据,包括相似性矩阵和重整形。

2) 假设检验(Hypothesis testing)

ICSNP包提供霍特林(Hotellings)T2检验和许多非参检验方法,包括基于marginal ranks的位置检验(location test),计算空间中值和符号,形状估计。

cramer包做两样本的非参检验,SpatialNP可做空间符号和秩检验。

3) 多元分布(Multivariate distributions)

描述统计(Descriptive measures)

stats包里的cov()和and cor()分别估计协方差和相关系数。

ICSNP包提供几种数据描述方法,如:spatial.median()估计空间中值,其它的函数估计scatter。

MASS包里的cov.rob()提供更健壮的方差/协方差矩阵估计。

covRobust包用最近邻方差估计法估计协方差。

robustbase包的covMCD()估计协方差和covOGK()做Orthogonalized Gnanadesikan-Kettenring。

rrcov包提供可扩展和稳健的估计函数covMcd()、covMest()。

corpcor包可计算大规模的协方差和偏相关矩阵。

密度估计和模拟(Densities (estimation and simulation))

MASS包的mvrnorm()产生多元正态分布的随机数。

Mvtnorm包有多元t分布和多元正态分布的概率和分位数函数,还可计算多元正态分布的密度函数。

mvtnormpcs包提供基于Dunnett的函数。

mnormt包提供元t分布和多元正态分布的密度和分布函数,并可产生随机数。

sn包提供多元偏t分布和偏正态分布的密度、分布、随机数函数。

delt包提供了许多估计多元密度的函数方法,如:CART和贪婪方法。

CRAN的Cluster任务列表(http://cran.r-project.org/web/views/Cluster.html)有更全面的信息,ks包里的rmvnorm.mixt()和dmvnorm.mixt()函数产生随机数和估计密度,

bayesm包里有多种拟合方法。很多地方都提供了模拟Wishart分布的函数,如:bayesm包里的rwishart(),MCMCpack包里的rwish(),而且MCMCpack包还有密度函数dwish()。KernSmooth

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值