青少年科技创新大赛 计算机,为什么这个项目获得了全国青少年科技创新大赛一等奖?...

本文介绍了2019年全国青少年创新大赛中,一位高中生利用计算机科学,尤其是人工智能技术,设计出低成本手语手套,实现中等词汇量连续手势识别,识别准确率超过97%。这一项目因其社会意义、创新难度和实际成果,获得了全国一等奖。项目结合DNN深度学习网络,对手语识别进行深入研究,并提出改进方案,展现了作者的科研能力和科技实践精神。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在2019年自主招生中,相比于2018年,科创竞赛热度虽有所降低,但仍然有武汉大学、苏州大学等知名高校明确认可全国青少年科技创新大赛,这对于有科技特长的考生来说,可以放心的填报这些高校的自主招生了。我们认为科技创新能力作为当今时代的核心能力,在未来的自主招生中肯定会有所体现,甚至得到加强。今天我们就分析一下在第32届全国青少年创新大赛全国决赛中,计算机科学的拔得头筹一个项目,该项目获取了全国一等奖。

项目名称:低成本手语手套设计与中等词汇量连续手势识别

项目基本信息:上海代表队、计算机科学、高中组

项目关键词:低成本 低功耗 DNN HMM 中等词汇量 连续手语识别

项目简介:

手语是聋哑人与世界交流的桥梁,随着计算机技术的发展与智能化的普及,对手语识别的研究也层出不穷,现今主要的研究方法有基于机器视觉与基于佩带式输入设备两种,论文选用了后者。论文运用了语音识别中的新技术,建立了DNN-HMM混合模型,设计并制作了低成本的手语手套,以DTW、GMM-HMM、DNN-HMM作为识别方法,探究最适合中等词汇量连续手语识别的方法。在电脑上完成模型的训练后将模型参数反灌至智能终端,通过编写的译码程序完成实时手语识别。论文研究发现在涉及的模型中,可以使用去除左手弯曲传感器的17维数据代替包含左手弯曲传感器的22维数据进行模型的训练与识别,不会影响最终的准确率;使用DNN代替GMM进行HMM的观测概率计算可以提高识别准确率,在无语法时提高效果更为显著,符合手语识别的发展趋势。论文使用训练得到的参数与译码程序,在智能终端上完成了手语的实时识别,识别准确率可以达到97%以上。

55223b93b3692b3e3a9b82a23d6dfdd8.png

3fc6e79e14cee4b966a76cf11b845ed4.png

17510b79dc0b60be42537bc13fbdab79.png

从立项角度和背景看

该项目从手语出发,面向聋哑人,具备较大的社会意义,利用科技进步助推社会进步的特征明显,切实能够为聋哑人提供生活上帮助,实践了科技造福人类的理念。因此,该项目肯定会让评审委员眼前一亮,为获取全国一等奖加分不少。

从项目创新难度看

该项目结合当前最为流行的人工智能技术,采用DNN深度学习网络技术,设计并制作了低成本的手语手套,探究最适合中等词汇量连续手语识别的方法。人工智能技术难度较高,一名高中生能够掌握基本人工智能技术,充分说明了该高中生具备较高的创新能力和科学素养。因此,项目实现具备较高难度,完成工作量大。

从项目研究深度看

作者在论文研究发现在涉及的模型中,可以使用去除左手弯曲传感器的17维数据代替包含左手弯曲传感器的22维数据进行模型的训练与识别,不会影响最终的准确率;使用DNN代替GMM进行HMM的观测概率计算可以提高识别准确率。充分说明了作者研究较为深入,而且提出了相对于传统方法的改进意见,表明作者善于科学研究,能够发现问题。

从项目成果看

项目设计了低成本的手语手套,并完成了程序设计,实现了实时手语识别。就是说,该项目不仅停留在论文研究层面,更在实践层面迈出了步伐,取得了成绩。一个项目是否真实的最重要体现,就在于是否有对应的实体产品。该项目以实际产品和产品演示说话,充分体现出作者的科技动手能力,也可以让专家评委较为信服。我们认为,最终的产品实现时该项目获得全国一等奖的重要保障。

举报/反馈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值