amos调节变量怎么画_AMOS 中验证性因素分析(CFA)

本文介绍了如何在AMOS中进行验证性因素分析(CFA),强调了聚合效度和区别效度的概念,并详细阐述了绘制潜变量图的过程。从SPSS启动AMOS,设置潜在变量和观察变量,调整方向,插入值,建立协方差,计算组合效度(CR)和平均方差抽取(AVE),并关注适配度指标如CMIN、RMSEA和AIC。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

* 没有数据缺失时选用极大似然估计法(Maximum Likelihood Estimates)

有数据确实时选用Full Information Maximum Likelihood (Arbuckle, Marcoulides, & Schumacker, 1996)

验证性因素分析(Confirmatory Factor Analysis)

EFA是简历量表或问卷的建构效度

CFA是检验此建构效度的适切性和真实性(观察变量与潜在变量间的关系)

聚合效度(Convergent validity):测量同一特质构念的测量指标会落在同一个因素构念上(.50~ .95

区别效度(Discriminant validity):两个因素构念间是有区别的(相关显著不等于1

4e06efb6867da57ad7b9b065dc936d44.png

开始:

首先在SPSS里面打开amos

325c55824089c7cdab26e65e509b5401.png

当当当AMOS界面出现

之后开始画图

8a35b9d879cbefbbf322c5da9cf2c1e6.png

点上红色框框里的图标,开始画潜变量,

例如 社会性成就目标 (social achievement goals)

包括 DEP (social development goal)

DAP (social demonstration-approach goal)

DAV (social demonstration-avoidance goal)

每个variable都有6个观察变量,所以所绘试图如下:

fcc6abcdef035a470f238b9489020b89.png

调整他们的方向,设置每一个潜在变量的名称和插入观察变量的值

  • 如果不是在SPSS中打开的AMOS的话,还的把所用数据文件打开,如下图所示。

e5f85832637fe5c1fa57bd254da8b50b.png

设置每一个潜在变量的名称(双击红色圈圈的潜在变量)

c6340ce3531fe9f97bb78bb5be64dfc3.png

之后 插入观察变量的值

5974d693937d6c58179a171887075871.png

在所有潜在变量之间画covariances

c9ee6aab3320cec08c5b0d3e73cc9566.png

命名空白残差

e9962cb90289137b64b0ec492f08acca.png

当当当

所谓的基本图形完成

dcb085f0e9c49d6c1045ccbba7e76b8c.png

现在开始分析吧

a0faa5bcaae5ae3174e8bd456a8f66b7.png
output 勾选所项

结果就出来啦

2f0c4c49d1d9ac39a07a06915b589120.png

之后就找数值吧

在estimate里面regression weights

如: DEP1~6 estimate 数值出现最大数值是1.030,那么这个时候就要把DEP->DEP2的那条线regression weights 设置为1;DAP,DAV的情况如同DEP进行就可以啦。

422017e7daf45043e21c8a269249e3b8.png

改完之后的结果分析

1a7dff52b7d70f92de3af11b46fa56b8.png

Estimates参数估计值

53110329aee37e1271ba87f7dae5979e.png

CR:组合效度

因素负量Factor loading =

> 0.6

Error Variance = 1-CR

AVE > 0.5

* EXCEL 算法文档CR & AVE.xls

6acad5ddcd556d65b516471154b6df90.png

* Correlations 三组因素间相关系数均在.75以上,显示出这三个因素间可能有另一个更高阶的共同因素存在。此时采用斜交CFA模型较为适宜。

ab008c919e7bf324fe4b5f325a31dc42.png

* 均为正数

如果出现负数,此时CFA测量模型应重新界定。

适配度(Model Fit Summary)

CMIN

d9ac4648c86985b0c245d8f944d9f7d7.png

* 预设模型(Default model),饱和模型(Saturated model),独立模型(Independence model)都会提供参数,但我们一般都以预设模型列的参数为准。

Baseline Comparisons

7f135f0764f644fd2266c3047b115fba.png

RMSEA

a7ac5467584e6bee6c624884b30dfb1f.png

AIC

d8ca9607ee3f057813408e32a2db1fb3.png

* AIC越小越好

AIC 的参数 default model< saturated model < independence model

Arbuckle, J. L., Marcoulides, G. A., & Schumacker, R. E. (1996). Full information estimation in the presence of incomplete data. Advanced structural equation modeling: Issues and techniques, 243, 277.

未完继续ing~~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值