判别性的低秩字典学习代码matlab,基于分类的判别性字典学习的稀疏编码算法研究...

第1章绪论1.1课题研究的背景及意义计算机视觉一直是人类视觉研究中的一项非常热门的领域。计算机视觉研究的目的是为了让计算机能够利用图像和图像序列来识别和感知周围的世界,以帮助人们在复杂的情况下解决未知的难题。在智能化信息时代,人类传统的手工劳动逐渐被智能机器人取代,而计算机视觉在此当中占据了不可替代的地位,甚至随着科技的发展,视觉方面的应用逐渐扩展到各个领域,比如信号处理、自动控制机器人、机器学习、数学、神经生物学、物理学等等。计算机视觉广泛应用于各种各样的实际应用中,如视频监控、生物识别、机器检验、模型建立和医学成像等。其中图像分类在计算机视觉中应用十分广泛,许多研究者一直从事该方向,对图像分类方面的发展做出一定的贡献。从人眼视觉感知机理的研究中表明,人眼视觉系统可以认为是一种极其复杂的图像处理系统[1],该系统具有选择性注意机制,即在进行注意的同时抑制非注意对象,从而只对注意对象进行下一步视觉处理。有关视觉研究表明,人类对外界的光线刺激并不是完全的被动接受,而是通过对视觉空间中如运动、颜色、亮度等突变的信息进行观察,以及对个人自身知识的了解的指导,人类通过视觉系统来主动寻找感兴趣的区域,屏蔽不感兴趣的区域。对于图像来说,由于各个像素的颜色、亮度的不同,使得图像本身的一些信息要比其它信息更加显著。人类大脑中的视觉皮层主要功能是对视觉系统信息处理,而初级视觉皮层(V1)是研究者们主要研究的区域,在V1区域中主要有两类细胞,简单细胞与复杂细胞:简单细胞有着条状和栅状的感受野[2],可用作接受方向信息;复杂细胞的感受野在视网膜区域范围较多,因此其对位置具有一定的不变性。当外界视觉信息输入到视觉皮层,大脑经过分析和处理后,就会通过视觉通路来表征对外界物体的识别和引起相应的动作。感受野受到外界视觉刺激后就会引起视觉神经元相应的响应。不同类型的感受野逐级进行特征提取,提取出有效信息的同时舍弃一些无效信息。因此,感受野具有“去冗余”的特点。研究表明,感受野受到外界的刺激可以用稀疏编码(SparseCoding,SC)模型来模拟,也就是说大脑以稀疏编码的方式来描述外界的信息。从数学领域的方向来讲,稀疏编码技术是一种多维数据线性表示的表述方法[3],测试信号经稀疏编码后只有少数字典原子处于激发状态,大部分字典原子被屏蔽掉。目前,许多研究都是使用线性生成模型,将过完备字典中的元素进行线性组合来重构输入信号。过完备字典是指字典的列数大于其行数。在一定程度上,过完备字典可以有效地捕捉图像的各种结构特点,实现图像的有效表示,具有去冗余的特征。近年来,在神经生物学、心理学和计算机视觉领域内,科学家们对稀疏编码进行了深入广泛的研究,并在某些方面取得了非常重要的研究成果。由于稀疏编码在一定程度上模拟人类感知系统,在人工智能、计算机视觉和模式识别领域有着非常深远的实用价值。图像分类技术的不断发展已经渗入到各行各业,它已与人们的生活娱乐息息相关。互联网的高速发展,人们不管是从购物、娱乐和餐饮,还是交通、气候、学习等,都离不开图像的分类;图像分类还应用到工农业和航天领域。在航天领域,遥感图像分类技术应用最为广泛;在工农业生产中,如种子的分选、药品的分类、零件的检测等等;在智能家居中的人脸分类,场景分类等都需要分类技术。因此,图像分类技术给人类的吃穿住行提供了更多的便利。本研究正是基于人类生活娱乐和生产等各个领域的发展有着重要的现实意义。目前,稀疏编码在图像分类应用越来越广泛,而图像分类是模式识别和计算机视觉领域的一个很重要的应用。对于人眼来说,人类对图像中的颜色、形状和实物等通过视

相关资源:matlab判别分析
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页