该楼层疑似违规已被系统折叠 隐藏此楼查看此楼
因为纯j写二叉树有点麻烦,所以干脆直接用数组代替算了
功能:用于存储一堆数据
优点,查询速度是所有数据结构中最快的
缺点,用为是数组模拟的是完全二叉树类型的数据结构,所以数组中肯定会有大部分空间是没用的,所以数组的大小大概增大到2倍,另外递归深度是有上限的,不过对于war3也够用了
我用的是全局变量,如果有需要,可以自行改代码,模拟数组传参或者用指针指向数组首地址
完全二叉树的性质是从左往右生长的,二叉搜索树的性质是左子树小于右子树
但是数组的特性是线式存储,那么怎么才能将二叉树用数组表示呢?
数组下标就是这么表示的,由此我们得知,左树的下标永远是 根下标 * 2 + 1,那么右树的下标永远是
根下标 * 2 + 2
由此我们也就得出的 所有的节点规律,那么插入代码也就是这么写:
// 二叉树的插入,使用的容器是全局变量integer数组,名字叫udg_nums
// 参数1 : 要插入的数据的值
// 参数2 : 数组的大小, 按照实际情况传入吧
// 参数3 : 没用的参数,传入0就行,这个参数就是为了方便递归
function arrayTree_insert takes integer val, integer size, integer index returns integer
// 创建构建完全二叉树左子树与右子树下标
local integer left = index * 2 + 1
local integer right = index * 2 + 2
local integer this_index = index
// 判定数组最大长度
if (left >= size or right >= size) then
return 0
endif
// 判定是否存在根结点,不存在则创建根
if (udg_nums[index] == 0) then
set udg_nums[index] = val
return 0
endif
// 判定数据大小是否大于根,大于插入右,小于插入左,由此构建查找树
if (val > udg_nums[this_index]) then
// 插入右
call arrayTree_insert(val, size, right)
else
call arrayTree_insert(val, size, left)
endif
return 0
endfunction
插入我用的是递归,依次进入树的深度,将树的每个根结点与插入的值进行比较,小于递归深度 + 1进入左树,大于则进入右树,一直找到节点为空(在此我表示0为空)的树枝插入值
然后是查询代码:
// 二叉树的查找,使用的容器是全局变量integer数组,名字叫udg_nums
// 参数1 : 要查询的值
// 参数2 : 数组的大小, 按照实际情况传入吧
// 参数3 : 没用的参数,传入0就行,这个参数就是为了方便递归
function arrayTree_seach takes integer val, integer size, integer index returns integer
local integer left = index * 2 + 1
local integer right = index * 2 + 2
if (left < size and udg_nums[index] != 0 and val > udg_nums[index]) then
call arrayTree_seach(val, size, right)
else
if (right < size and udg_nums[index] != 0 and val < udg_nums[index]) then
call arrayTree_seach(val, size, left)
else
// 找到你想要的数据了,index就是数据的索引,也就是udg_nums[index],对数据的操作自由编写,
// 想要进行怎样的操作请写在下面
endif
endif
return 0
endfunction
查询同样用的递归,将查询的值与数的根进行比较,小于递归进入左树,大于 递归进入右树,直到等于则找到你要的数据,说明数据在树中存在,否则返回空
遍历代码:
// 树的遍历
// 二叉树的遍历,使用的容器是全局变量integer数组,名字叫udg_nums
// 参数1 : 数组的大小, 按照实际情况传入吧
// 参数2 : 没用的参数,传入0就行,这个参数就是为了方便递归
function arrayTree_each takes integer size, integer index returns nothing
// 获取左右子树下标
local integer left = index * 2 + 1
local integer right = index * 2 + 2
// 如果你需要前序遍历,做什么操作请在这个地方写,遍历的时候别忘了判定这个数据是否存在的,如if udg_nums[index] != 0
// 判定数据是否存在,由于是integer类型的数组,所以值为0就相当于数据内无值
if (left < size and udg_nums[index] != 0) then
call arrayTree_each(size, left)
endif
// 如果你需要中序遍历,做什么操作请在这个地方写
if (right < size and udg_nums[index] != 0) then
call arrayTree_each(size, right)
endif
// 如果你需要后序遍历,做什么操作请在这个地方写
endfunction
同样的 递归我就不多说了
这个数据结构我没有写能够插入重复数据的,如果插入的数据在书中已经存在则会被忽略