视频教程-《Java基础篇-从入门到精通》-Java

《Java基础篇-从入门到精通》
东北大学计算机专业硕士研究生,欧瑞科技创始人&CEO,曾任国内著名软件公司项目经理,畅销书作者,企业IT内训讲师,CSDN学院专家讲师,制作视频课程超过1000小时。拥有超过15年的企业内训经验和开发经验。目前主要从事Python、人工智能、大数据、区块链、JavaScript、Java、C++等技术的研究和开发,现在正在带领团队开发支持区块链的跨平台开发系统。曾出版超过30多本IT畅销书,主要著作包括《Python从菜鸟到高手》、《第一行代码:以太坊》等。授课风趣幽默,讲解条理清晰、通俗易懂,对知识有自己独到见解。能举一反三,发散学生的思维,指引学生发掘适合自己的学习方法。
李宁
¥117.00
立即订阅

扫码下载「CSDN程序员学院APP」,1000+技术好课免费看

APP订阅课程,领取优惠,最少立减5元 ↓↓↓

订阅后:请点击此处观看视频课程

 

视频教程-《Java基础篇-从入门到精通》-Java

学习有效期:永久观看

学习时长:886分钟

学习计划:15天

难度:

 

口碑讲师带队学习,让你的问题不过夜」

讲师姓名:李宁

技术总监/研发总监

讲师介绍:东北大学计算机专业硕士研究生,欧瑞科技创始人&CEO,曾任国内著名软件公司项目经理,畅销书作者,企业IT内训讲师,CSDN学院专家讲师,制作视频课程超过1000小时。拥有超过15年的企业内训经验和开发经验。目前主要从事Python、人工智能、大数据、区块链、JavaScript、Java、C++等技术的研究和开发,现在正在带领团队开发支持区块链的跨平台开发系统。曾出版超过30多本IT畅销书,主要著作包括《Python从菜鸟到高手》、《第一行代码:以太坊》等。授课风趣幽默,讲解条理清晰、通俗易懂,对知识有自己独到见解。能举一反三,发散学生的思维,指引学生发掘适合自己的学习方法。

☛点击立即跟老师学习☚

 

「你将学到什么?」

本视频课程主要包括Java基础、数组和字符串、面向对象基础、面向对象基础、集合、异常、数据流、线程、网络等

 

「课程学习目录」

第1章:Java基础
1.Java概述(1)
2.Java概述(2)
3.jdk下载、安装和配置
4.用命令行方式编译和运行Java程序
5.Eclipse的下载和安装
6.Eclipse的菜单结构
7.在Eclipse中创建和运行Java工程
8.在Eclipse中为Java程序传递命令行参数
9.在Eclipse中调试Java程序
10.Eclipse的一些使用技巧
11.Java程序的基本结构
12.Java标识符
13.基本数据类型-整数
14.基本数据类型-浮点、字符和布尔
15.变量和常量
16.Java运算符(1)
17.Java运算符(2)
18.Java类型转换
19.Java注释
20.控制流:if条件语句
21.控制流:switch条件语句
22.控制流:while循环语句
23.控制流:for循环语句
24.控制流:break和continue语句
第2章:数组和字符串
1.一维数组的创建
2.初始化一维数组
3.二维数组的创建
4.初始化二维数组
5.使用同一个值填充数组
6.数组排序
7.复制数组
8.创建字符串
9.字符串操作(1)
10.字符串操作(2)
11.将日期和时间格式化为字符串
12.正则表达式(1)
13.正则表达式(2)
14.StringBuilder
15.StringBuffer
第3章:面向对象基础
1.面向对象基础
2.Java中的Package
3.类的构造方法
4.类的成员变量
5.类的成员方法
6.类中的静态变量、静态方法和静态构造方法
7.权限修饰符
8.对象比较
9.自定义对象的比较
10.接口概述
11.类如何实现接口
12.接口的多继承和类的多实现
13.类的继承
14.方法重写(override)
15.super和this的用法
16.多态
第4章:高级面向对象技术
1.抽象类
2.内部类
3.方法内部类
4.匿名内部类
5.反射技术
6.在类中使用泛型
7.对泛型参数范围的限制
8.方法泛型
第5章:集合
1.集合:List
2.ArrayList与快速定位
3.Set
4.Map
第6章:异常
1.异常捕捉(1)
2.异常捕捉(2)
3.trycatchfinally
4.throws的作用和用法
5.throw的作用和用法
6.自定义异常类
第7章:数据流、线程和网络技术
1.流的使用
2.用Thread创建线程类
3.用Runnable创建线程类
4.线程连接
5.线程同步
6.获取网路相关信息
7.判断IP是IPv4还是IPv6
8.用Socket与服务端交互
9.实现网路服务端程序

 

7项超值权益,保障学习质量」

  • 大咖讲解

技术专家系统讲解传授编程思路与实战。

  • 答疑服务

专属社群随时沟通与讲师答疑,扫清学习障碍,自学编程不再难。

  • 课程资料+课件

超实用资料,覆盖核心知识,关键编程技能,方便练习巩固。(部分讲师考虑到版权问题,暂未上传附件,敬请谅解)

  • 常用开发实战

企业常见开发实战案例,带你掌握Python在工作中的不同运用场景。

  • 大牛技术大会视频

2019Python开发者大会视频免费观看,送你一个近距离感受互联网大佬的机会。

  • APP+PC随时随地学习

满足不同场景,开发编程语言系统学习需求,不受空间、地域限制。

 

「什么样的技术人适合学习?」

  • 想进入互联网技术行业,但是面对多门编程语言不知如何选择,0基础的你
  • 掌握开发、编程技术单一、冷门,迫切希望能够转型的你
  • 想进入大厂,但是编程经验不够丰富,没有竞争力,程序员找工作难。

 

「悉心打造精品好课,15天学到大牛3年项目经验」

【完善的技术体系】

技术成长循序渐进,帮助用户轻松掌握

掌握Java知识,扎实编码能力

【清晰的课程脉络】

浓缩大牛多年经验,全方位构建出系统化的技术知识脉络,同时注重实战操作。

【仿佛在大厂实习般的课程设计】

课程内容全面提升技术能力,系统学习大厂技术方法论,可复用在日后工作中。

 

「你可以收获什么?」

让学员掌握Java 8的基本语法一集一些常用的API。

 

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值